anaconda双版本完美并存

一、问题起源: 电脑上只安装了python2.7,由于深度学习的需要,需要安装python3.6的版本,由于python包太多,安装麻烦,所以选择安装anaconda3,; 二、解决方案: 1.尝试过再安装一个anaconda3版本,但存在一些冲突,所以又卸载 2.直接安装anaconda...

2019-03-19 12:33:23

阅读数 3

评论数 0

第一次使用码云

1.在码云网站上创建一个项目,例如名为test 记录其地址例https://git.oschina.net/NYang/test.git 2.在本地电脑上建立一个空文件夹, 3.建立连接 git user.name user.email git地址 4.保持一致,先pull下来,将远程的pu...

2019-03-19 12:30:44

阅读数 2

评论数 0

centos7怎么安装中文环境支持包

网上搜索使用yum groupinstall chinese-support;error:不存在这样的包 最后使用这个有效yumgroupinstall "fonts" 有效 Vi/etc/sysconfig/i18n 修改: LANG=en_CN.UTF8改为 LAN...

2019-03-18 19:18:20

阅读数 6

评论数 0

linux安装anaconda3时出现error,the size of ** should be 6*** bytes

问题:linux安装anaconda3时出现error,the size of ** should be 6*** bytes sh Anaconda3.5.2**************.sh 出现error:提示 the size of …… shoulde be bytes 尝试了很多...

2019-03-18 16:40:20

阅读数 21

评论数 0

win10配置xx-net步骤

1、下载稳定版的xx-net 2、运行start.vps 3、配置ipv6地址(一定要ping成功)(非常关键的一步,个人经验是Ping成功是xxnet翻墙的必要条件) // 设置 Teredo 服务器,默认为:win10.ipv6.microsoft.com netsh interf...

2019-03-17 21:43:41

阅读数 9

评论数 0

centos系统所需软件

对于centos非常重要的一个地址:http://vault.centos.org/ gcc+bzip2(Anaconda所需) gcc及所需依赖包下载的官方地址:http://vault.centos.org/7.5.1804/os/x86_64/Packages/ 所需的依赖:cento...

2019-03-17 16:15:08

阅读数 8

评论数 0

Linux下二进制包、源代码包、rpm.binary与rpm.source

要提供三种格式的mysql包:rpm格式、二进制格式、源码格式:(tar打包,gz压缩) rpm格式:libjpeg-devel-6b-33.x86_64.rpm #rpm格式很好区分,(等同于window下的exe文件) 二进制包:mysql-3.23.58-pc-linux-i686...

2019-03-17 14:43:17

阅读数 8

评论数 0

高斯过程理解-好文

def plot_unit_gaussian_samples(D): p = figure(plot_width=800, plot_height=500, title='Samples from a unit {}D Gaussian'.format(D))...

2019-03-14 20:53:58

阅读数 26

评论数 0

禁止vim生成 un~文件

set noundofile set nobackup set noswapfile

2019-03-14 19:38:59

阅读数 3

评论数 0

随机过程的理解

随机过程的本质有两个要点:一是随机,二是过程;随机说明任何时候结果都存在不确定性,即分布函数(或者概率密度函数);过程体现的是时间;在时间t时,随机变量服从某一分布,另一时刻随机变量服从某一分布;如图所示: 如果随机过程中的所有随机变量服从高斯分布,就是高斯过程了; ...

2019-03-14 11:32:46

阅读数 8

评论数 0

贝叶斯优化的初步理解

最优值是高方差和平均值是比较高的(前提是优化函数为最大值),如图所示: 黑色实线是平均值;虚线为目标函数真实值,黑点为已经抽样的点包括x与y;红色的点是新选择的x; 新选择的x是要考虑高方差与高预测值的,而不仅仅是高预测值;当时我不理解获得函数曲线为什么没有与实线同步(即只考虑预测值) 本质...

2019-03-14 11:26:56

阅读数 28

评论数 0

机器学习中的高斯过程简介-好文

import matplotlib.pyplot as plt import numpy as np from itertools import cycle color_cycle = cycle('kbryg') n_variable = 20 n_sample = 5 plt.figure...

2019-03-13 22:51:38

阅读数 9

评论数 0

RandomizedSearchCV 和GridSearchCV

# -*- coding: utf-8 -*- import time import numpy as np from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier f...

2019-03-13 19:49:39

阅读数 5

评论数 0

调参必备--Grid Search网格搜索

什么是Grid Search 网格搜索? Grid Search:一种调参手段;穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果。其原理就像是在数组里找最大值。(为什么叫网格搜索?以有两个参数的模型为例,参数a有3种可能,参数b有4种可能,把所有可能...

2019-03-13 19:35:40

阅读数 2

评论数 0

缺失值处理的三种方法

缺失值处理的三种方法:直接使用含有缺失值的特征;删除含有缺失值的特征(该方法在包含缺失值的属性含有大量缺失值而仅仅包含极少量有效值时是有效的);缺失值补全。 常见的缺失值补全方法:均值插补、同类均值插补、建模预测、高维映射、多重插补、极大似然估计、压缩感知和矩阵补全。 (1)均值插补 如果样...

2019-03-12 20:48:23

阅读数 12

评论数 0

python3月新增知识点

np.ptp:peak to peak

2019-03-12 19:50:36

阅读数 10

评论数 0

one-hot与哑变量(dummy variable)的区别

在机器学习问题中,我们通过训练数据集学习得到的其实就是一组模型的参数,然后通过学习得到的参数确定模型的表示,最后用这个模型再去进行我们后续的预测分类等工作。在模型训练过程中,我们会对训练数据集进行抽象、抽取大量特征,这些特征中有离散型特征也有连续型特征。若此时你使用的模型是简单模型(如LR),那么...

2019-03-12 19:35:43

阅读数 32

评论数 0

PCA和whitening

 PCA:   PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化。   PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小。另外线性回归是通过x值来预测y值,而PCA中是将所有的x...

2019-03-12 10:47:17

阅读数 15

评论数 0

Identity matrix 与whitening的理解

Awhitening transformationorsphering transformationis alinear transformationthat transforms a vector ofrandom variableswith a knowncovariance matrixin...

2019-03-12 10:43:21

阅读数 27

评论数 0

categorical data and numerical data

原以为:categorical data是离散型数据,numerical data是连接型数据;其实错的离谱; 本质上来讲,是能不能用来计算;categorical是不能用来计算的,比如性别;而数值型数据是可以用来计算的,数值型数据包括离散型与连续型的;比如说统计抛硬币的次数,那只能是1,2,3...

2019-03-12 10:32:49

阅读数 28

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭