入门算法,二分搜索

入门算法,二分搜索

一,二分查找

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
力扣链接
对于一个有序数组,最简单的思路就是,一个一个查找,很显然,时间复杂度是O(n),可以进行优化。
思考一下,有序数组的条件没有用到,重点是有序
既然是有序
那么对于任意一个数
如果target比他大,那么target就在他的右边
如果target比他小,那么target就在他的左边
于是乎,另外一边就完全不用查找了

class Solution {
    public int search(int[] nums, int target) {
        int mid=0;
        int l=0;
        int r=nums.length-1;
        mid=l+(r-l)/2;
        while(l<=r){
            if(nums[mid]==target){
                return mid;
            }else if(nums[mid]<target){
                l=mid+1;
            }else{
                r=mid-1;
            }
            mid=l+(r-l)/2;
        }
        return -1;
    }
}

对于

mid=l+(r-l)/2;

他比直接用

mid=(l+r)/2

好,因为可以防止溢出

二,峰值问题

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞ 。

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

示例 1:

输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。
力扣链接
首先考虑一下,nums[0]和nums[nums.length-1]
如果nums[0]比nums[1]大,那么nums[0]就是一个峰
如果nums[nums.length-1]比nums[nums.length-2]大,那么nums[nums.length-1]就是一个峰
如果上面两个都没有发生
那么,考虑中点mid
如果mid是一个峰,返回即可
如果不是
如果nums[mid-1]>nums[mid],那么仿照中值定理的原理,左半部肯定有峰,左半部继续循环查找
如果nums[mid+1]>nums[mid],那么仿照中值定理的原理,右半部肯定有峰,右半部继续循环查找

class Solution {
    public int findPeakElement(int[] nums) {
        int mid=0;
        int l=1;
        int r=nums.length-2;
        mid=l+(r-l)/2;
        if(nums.length==1){
            return 0;
        }
        if(nums[0]>nums[1]){
            return 0;
        }
        if(nums[nums.length-1]>nums[nums.length-2]){
            return nums.length-1;
        }
        while(l<=r){
            if(nums[mid]>nums[mid+1]&&nums[mid]>nums[mid-1]){
                return mid;
            }else if(nums[mid-1]>nums[mid]){
                r=mid-1;
            }else{
                l=mid+1;
            }
            mid=l+(r-l)/2;
        }
        return -1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值