反码、补码

1 )原码表示法

原码表示法是机器数的一种简单的表示法。其符号位用 0 表示正号,用:表示负号,数值一般用二进制形式表示。设有一数为 x ,则原码表示可记作[ x ]原。

例如, X1= 1010110

X2=
1001010

其原码记作:

X1 ]原 =[ 1010110] =01010110

X2 ]原 =[ 1001010] =11001010

原码表示数的范围与二进制位数有关。当用 8 位二进制来表示小数原码时,其表示范围:

最大值为 0.1111111 ,其真值约为( 0.99 10

最小值为 1.1111111 ,其真值约为(一 0.99 10

当用 8 位二进制来表示整数原码时,其表示范围:

最大值为 01111111 ,其真值为( 127 10

最小值为 11111111 ,其真值为(- 127 10

在原码表示法中,对 0 有两种表示形式:

+0 ]原 =00000000

[
0] =10000000

 

2 )补码表示法

机器数的补码可由原码得到。如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加 1 而得到的。设有一数 X ,则 X 的补码表示记作[ X ]补。

例如, [X1]= 1010110

[X2]=
1001010

[X1]
=01010110

[X1]
=01010110

[X1] =[X1] =01010110

[X2]
= 11001010

[X2]
=10110101 1 10110110

补码表示数的范围与二进制位数有关。当采用 8 位二进制表示时,小数补码的表示范围:

最大为 0.1111111 ,其真值为( 0.99 10

最小为 1.0000000 ,其真值为(一 1 10

采用 8 位二进制表示时,整数补码的表示范围:

最大为 01111111 ,其真值为( 127 10

最小为 10000000 ,其真值为(一 128 10

在补码表示法中, 0 只有一种表示形式:

[
0] =00000000

[
0] =11111111 1=00000000 (由于受设备字长的限制,最后的进位丢失)

所以有 [ 0] =[ 0] =00000000

 

 

3 )反码表示法

机器数的反码可由原码得到。如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的。设有一数 X ,则 X 的反码表示记作[ X ]反。

例如: X1= 1010110

X2=
1001010

X1 ]原 =01010110

[X1]
= X1 ]原 =01010110

[X2]
=11001010

[X2]
=10110101

反码通常作为求补过程的中间形式,即在一个负数的反码的未位上加 1 ,就得到了该负数的补码。

1. 已知 [X] =10011010 ,求 [X] 补。

分析如下:

[X] 原求 [X] 补的原则是:若机器数为正数,则 [X] =[X] 补;若机器数为负数,则该机器数的补码可对它的原码(符号位除外)所有位求反,再在未位加 1 而得到。现给定的机器数为负数,故有 [X] =[X] 原十 1 ,即

[X]
=10011010

[X]
=11100101

十)      1

 

[X]
=11100110



 

2. 已知 [X] =11100110 ,求[ X ]原。

分析如下:

对于机器数为正数,则[ X ]原 = X ]补

对于机器数为负数,则有[ X ]原 = [[ X ]补]补

现给定的为负数,故有:

X ]补 =11100110

[[ X ]补]反 =10011001

十) 1

 

[[ X ]补]补 =10011010= X ]原

求补码的方法:设X;若X≥0,则符号位(原码最高位)为0,X其余各位取值照抄;若X≤0,则符号位为1,其余各位按位取反后,最低位加1
【例5】X=+1001001    [X] = 01001001
【例6】X=-1001001    [X] = 10110111

补码加减法
   
计算机中实际上只有加法,减法运算转换成加法运算进行,乘法运算转换成加法运算进行,除法运算转换成减法运算进行。用补码可以很方便的进行这种运算。

1、补码加法
    [X+Y] = [X] + [Y]
【例】X=+0110011,Y=-0101001,求[X+Y]
     [X]=00110011   [Y]=11010111
     [X+Y] = [X] + [Y]= 00110011+11010111=00001010
     注:因为计算机中运算器的位长是固定的,上述运算中产生的最高位进位将丢掉,所以结果不是
         1
00001010,而是00001010。

2、补码减法
    [X-Y] = [X] - [Y]= [X] + [-Y]
    其中[-Y]称为负补,求负补的方法是:对补码的每一位(包括符号位)求反,最后末位加“1”。
【例】X=+0111001,Y=+1001101,求[X-Y]
     [X]=00111001   [Y]=01001101   [-Y]= 10110011
     [X-Y] = [X] + [-Y]= 00111001+10110011=11101100  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值