第2关:找假币问题(python 分治法),没人写就我自己来

任务描述

依然是分治算法。

相关知识

找假币问题是一个比较简单且典型能够体现计算思维的问题。假设现在有n(n>=2)枚硬币,已知其中一枚为假币,且知道假币的重量是比真币轻的,请思考如何用分治思想解决该问题。

算法原理

本次实验中我们采用二分法解决假币问题。二分法是一个非常典型的分治思想的应用。

  1. 如果n是偶数,将n个硬币平均分成两份,直接比较这两份硬币的重量,假币在重量较轻的那份硬币中,继续对重量较轻的那一份硬币使用二分法,直到找出假币;
  2. 如果n是奇数,则随意取出一种的一枚硬币,将剩下的n-1枚硬币等分成两份。如果这两份硬币重量相同,则随机取出的那枚硬币即为假币;否则,按照硬币数为偶数是的处理办法继续执行算法。

算法实现

前提假设:假币比真币轻,真币重量一致。

如果没有假币,索引和重量位置均为-1。

测试说明:

测试输入: 3,3,3,3,3,3,3,2,3 预期输出: position is: 7, weight is: 2.

看懂了就写完了

函数ac代码 


def f_c(a, arr):  # a为索引,l列表,最终函数运行结果是假币的位置索引和假币的重量。
    x = len(arr)  # x继承个数
    # print(a+1, arr) #打印索引和列表,报告检查
    if x == 1:  # 单列表
        return a  # ,返回序列
    if x % 2 == 1:  # 奇数长案例
        x = x - 1  # x继承尾序列,随便拿了最后一个
        y = 1  # 状态变量随便抽一个
    else:  # 偶数长
        y = 0  # 直接分
        # 以上为第一批选择结构
        # 分割

    if (sum(arr[:x // 2])) < sum(arr[x // 2:x]):  # 前半段 小于 后半段
        return f_c(a, arr[:x // 2])  # 递归调用 ,前半段再分
    elif (sum(arr[:x // 2])) > sum(arr[x // 2:x]):  # 前大于后
        return f_c(a + x // 2, arr[x // 2:x])  # 递归后半段
    else:  # ,上面应该是控制了补集关系,前后相等.
        if y == 0:  # 平分状态
            return -1  # 返回负一,无假币
        else:  # 随便拿了最后一个
            if arr[x] < arr[0]:  # 鉴定为假
                return a + x  # 返回序列
            else:  # equal
                return -1  # 无假币

主函数边界修正

if __name__ == '__main__':
    li = input().split(',')  # get char
    a = [int(x) for x in li]  # be int
    n = f_c(0, a)  # get it x
    if n!=-1:
        print('position is: %d, weight is: %d.' % (n, a[n]))
    else:
        print('position is: %d, weight is: %d.' % (n, -1))

原题有代码图

是一道阅读理解 

增加更完备的描述,提供代码,减少外链,增加投票来和读者互动。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值