Cactus UVALive - 3514
图论·仙人掌
代码来自:
http://blog.csdn.net/qq_34317623/article/details/62041651
题目大意:
给一个无向图,若它是仙人掌,则求出它有多少生成子图(包括自身)是仙人掌,否则输出0。仙人掌被定义为每条边最多在一个简单回路上的连通无向图。
题解:
首先判断原图是不是仙人掌。依据:
1.连通性
2.每条边在几个简单回路上
条件2怎么判断呢?我也不是很懂。抄代码。以后蒙蒙开心了再说吧。
如果是,生成子图的个数就是所有 环的长度+1 的乘积。
因为原图已经是仙人掌了,我们又只能删边,因此条件2一定满足。
因此只要保证连通性即可。换言之,每个环可以选择断任意一条边或者不断。
Code:
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define mm(a,b) memset(a,b,sizeof(a))
const int maxn=2e4+5;
vector<int> G[maxn];
struct solotion{
int n, cylcnt;
vector<int> G[maxn];
int c[maxn], dfn[maxn];
int ans[maxn], cycle[maxn];
void init(int n){
this->n=n; cylcnt=0;
for(int i=0;i<=n;i++) G[i].clear();
mm(c,0); mm(dfn,0);
mm(cycle,0); mm(ans,0);
}
void add_edge(int u,int v){
G[u].push_back(v);
G[v].push_back(u);
}
void dfs(int u,int fa){
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(v==fa) continue;
if(!dfn[v]){
dfn[v]=dfn[u]+1;
dfs(v, u);
c[u]+=c[v];
}else if(dfn[v]<dfn[u]){
cycle[cylcnt++]=dfn[u]-dfn[v]+2;
c[u]++, c[v]--; //此反向边连向v,c[v]自减,防止重复加
}
}
}
void get_ans(){
int len=0;
ans[len]=1;
for(int i=0;i<cylcnt;i++){
// printf("cycle=%d\n",cycle[i]);
for(int j=0;j<=len;j++)
ans[j]*=cycle[i];
for(int j=0;j<=len;j++){
ans[j+1]+=ans[j]/10;
ans[j]%=10;
}
while(ans[len+1]){
ans[len+2]+=ans[len+1]/10;
ans[++len]%=10;
}
}
for(int i=len;i>=0;i--)
printf("%d",ans[i]);
puts("");
}
bool solve(){
dfn[1]=1; dfs(1,-1);
for(int i=1;i<=n;i++)
if(dfn[i]==0||c[i]>1){
puts("0");
return false;
}
get_ans();
return true;
}
};
solotion sol;
int main(){
int n, m, K;
int u, v;
int cas=0;
while(~scanf("%d%d",&n, &m)){
sol.init(n);
if(cas++!=0) puts("");
for(int i=0;i<m;i++){
scanf("%d",&K);
scanf("%d",&u);
for(int i=1;i<K;i++){
scanf("%d",&v);
sol.add_edge(u,v);
u=v;
}
}
sol.solve();
}
return 0;
}