Cactus UVALive - 3514

Cactus UVALive - 3514

图论·仙人掌

代码来自:
http://blog.csdn.net/qq_34317623/article/details/62041651

题目大意:

给一个无向图,若它是仙人掌,则求出它有多少生成子图(包括自身)是仙人掌,否则输出0。仙人掌被定义为每条边最多在一个简单回路上的连通无向图。

这里写图片描述

题解:

首先判断原图是不是仙人掌。依据:
1.连通性
2.每条边在几个简单回路上

条件2怎么判断呢?我也不是很懂。抄代码。以后蒙蒙开心了再说吧。

如果是,生成子图的个数就是所有 环的长度+1 的乘积。
因为原图已经是仙人掌了,我们又只能删边,因此条件2一定满足。
因此只要保证连通性即可。换言之,每个环可以选择断任意一条边或者不断。

Code:

#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define mm(a,b) memset(a,b,sizeof(a))
const int maxn=2e4+5;

vector<int> G[maxn];

struct solotion{
    int n, cylcnt;
    vector<int> G[maxn];
    int c[maxn], dfn[maxn];
    int ans[maxn], cycle[maxn];
    void init(int n){
        this->n=n; cylcnt=0;
        for(int i=0;i<=n;i++) G[i].clear();
        mm(c,0); mm(dfn,0);
        mm(cycle,0); mm(ans,0);
    }
    void add_edge(int u,int v){
        G[u].push_back(v);
        G[v].push_back(u);
    }
    void dfs(int u,int fa){
        for(int i=0;i<G[u].size();i++){
            int v=G[u][i];
            if(v==fa) continue;
            if(!dfn[v]){
                dfn[v]=dfn[u]+1;
                dfs(v, u);
                c[u]+=c[v];
            }else if(dfn[v]<dfn[u]){
                cycle[cylcnt++]=dfn[u]-dfn[v]+2;
                c[u]++, c[v]--; //此反向边连向v,c[v]自减,防止重复加
            }
        }
    }
    void get_ans(){
        int len=0;
        ans[len]=1;
        for(int i=0;i<cylcnt;i++){
//          printf("cycle=%d\n",cycle[i]);
            for(int j=0;j<=len;j++)
                ans[j]*=cycle[i];
            for(int j=0;j<=len;j++){
                ans[j+1]+=ans[j]/10;
                ans[j]%=10;
            }
            while(ans[len+1]){
                ans[len+2]+=ans[len+1]/10;
                ans[++len]%=10;
            }
        }
        for(int i=len;i>=0;i--)
            printf("%d",ans[i]);
        puts("");
    }
    bool solve(){
        dfn[1]=1; dfs(1,-1);
        for(int i=1;i<=n;i++)
        if(dfn[i]==0||c[i]>1){
            puts("0");
            return false;
        }
        get_ans();
        return true;
    }
};

solotion sol;

int main(){
    int n, m, K;
    int u, v;
    int cas=0;

    while(~scanf("%d%d",&n, &m)){
        sol.init(n);
        if(cas++!=0) puts("");
        for(int i=0;i<m;i++){
            scanf("%d",&K);
            scanf("%d",&u);
            for(int i=1;i<K;i++){
                scanf("%d",&v);
                sol.add_edge(u,v);
                u=v;
            }
        }
        sol.solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值