Huterox
好好学习,天天向上。
展开
-
AppAgent 开源项目解读
这些函数的目的是将GPT-4模型的文本响应转换为更易于处理的结构化数据,以便后续的脚本或程序可以根据这些数据执行相应的操作。这个脚本的目的是自动化地执行用户指定的任务,通过与Android设备交互,并根据GPT-4模型的指导来完成这些任务。如果任务成功完成或者达到预设的最大轮数,脚本会输出相应的信息。在生成文档的过程当中,最主要的就是如何得到用户的操作,这里当前这个项目是直接通过终端,先进行终端交互操作,然后记录下来的图片等等之类的信息,将会被放到./目录下面,见到文档生成部分设置的默认路径。原创 2024-01-30 22:45:25 · 261 阅读 · 0 评论 -
AI辅助瞄准系统开发与实战(二)
回顾上文,在这里的话,我完成了基本的GUI界面的设计,和窗口图像的工具代码。当然这个绘制窗口的代码有点问题,那就是,绘制的窗口有闪烁。我看了很多解决方案,都试了,包括双缓存方案,都存在一定的问题,导致绘制的窗口存在闪烁问题。当然也有可能是游戏问题导致的,具体是啥,我实在是没有时间去搞了。ok,那么这篇文章就先到这里,我们后面完成全部整合。原创 2023-07-16 21:24:21 · 550 阅读 · 0 评论 -
AI辅助瞄准系统开发与实战(三)-竣工
okey,大概经过,两天的开发,我在这里完成了基本的全部开发。那么我们先来看看大概的效果吧:在这里的话,全部功能是做好了的。当然还有很多需要优化的地方。这个玩意辅助帮助我们快速启动一个线程。原创 2023-07-16 21:19:14 · 860 阅读 · 3 评论 -
AI辅助瞄准系统开发与实战(一)
直接看效果,狗头:之所以搞这个的话,当然主要一方面是因为确实有点意思在里面,此外在很久以前,也有很多的UP做过这样的玩意。当然更重要的是,这玩意在某宝上面竟然敢卖1.6K,这谁受得了。于是花了点时间把这个玩意给做出来了。这里我测试的游戏是:《荒野行动》,你换啥游戏其实都可以,没啥影响,之后后面把模型换一下即可。前置知识的话,主要是用到我前几篇博文关于Yolo的一些使用,包括自己训练数据集,其他的其实没啥了。原创 2023-07-16 00:58:42 · 834 阅读 · 0 评论 -
Yolov5-Lite + Sort算法实现边缘目标跟踪
昨天挖了个坑,那么今天的话把坑填上,只要是实现Sort算法和Yolov5-Lite的一个整合。当然先前的话,我们在Yolov3–Tiny的时候,也做了一个,不过当时的话,有几个问题没有解决。第一就是当时以中心点进行预测的,这样做的结果就是如果目标框的波动比较大的话,影响会很大,同时,当时设计是为了应对直线旋转平移这样的运动进行捕捉。所以效果比较差。同时就是对于目标点的匹配不合理。那就是,我是按照,当预测点和识别点进行距离计算,计算当前点的最小距离。原创 2023-07-09 15:11:49 · 1567 阅读 · 0 评论 -
YOLOV5-Lite轻量化部署与训练
没啥意思,很简单,需要实现一个目标检测,但是,不能占用太多运算资源,同时需要保证一定的精度。并且要在移动端部署,要在一台ROS小车上面部署。那么此时常见的选择自然有yolov3-tiny等。但是考虑到onnx部署方案的成熟,目前的加持之下,python也有不错的效率,所以,这里就考虑使用到yolov5-lite版本。可以看到官方的对比:同时在我的本地机器上面也是做了对比。原创 2023-07-08 22:16:44 · 2511 阅读 · 0 评论 -
基于卡尔曼滤波实现线性目标跟踪
一个需求,在一个稳定的场景当中,实现目标检测计数算法。实现目标检测完成对不同类别的物品进行计数在边缘设备完成部署边缘设备算力不足目标识别精度问题,识别类别在28类实时检测,存在相同物品重复计数的问题,需要进行区分识别,避免重复计数算力不足可以使用tiny系列的yolo算法,并通过tensorRT进行加速处理摄像头运动轨迹固定,为线性移动过程采用yolov3-tiny 算法通过卡尔曼滤波实现简单的目标跟踪,记录物品ID和类别即可完成计数。原创 2023-06-01 18:39:51 · 1041 阅读 · 0 评论 -
线性回归模型一二三
线性回归的基本假设是,变量之间的关系可以用一个或多个线性方程来近似表示。例如,如果我们只用一个自变量x来预测因变量y,例如:yβ0β1xμyβ0β1xμ其中,β0\beta_0β0和β1\beta_1β1是线性回归的参数,也叫做回归系数,它们表示了x和y之间的线性关系的强度和方向。μ\muμ是误差项,它表示了y的真实值和预测值之间的差异,通常假设它服从均值为0的正态分布。原创 2023-05-31 11:38:44 · 565 阅读 · 0 评论 -
聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【完整版】
没想到从五一之后,到现在鸽了那么久。没办法,实话实说,确实忙,五一期间就没怎么休息,开局第一周,准备IEEE国际会议报告,第二周大创结题准备材料和最后的代码调试组合。上周还跑到武汉去培训,备研大忌估计是被我踩了个遍。按照以前的传统,在520前,我是会做点啥好玩的东西,用来表白啥的,虽然我是真用不上。不过,不过由于忙,这个传统被打破了,那么竟然如此,也是时候迈向未来了。我们追求的始终是更高层次的精神会晤,精神上的交流而不单单是生理上的刺激,如果是那样,洗脚脚未必不可。原创 2023-05-23 17:46:37 · 2622 阅读 · 26 评论 -
聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】
趁着五一有时间,先把大三下个学期的期末作业做了,把微信小程序和Java开发的一起做了。顺便把机器学习的也一起做了。原创 2023-05-01 22:17:14 · 2156 阅读 · 1 评论 -
具备人脸识别功能的多目标在线实时行为检测(yolov5+deepsort+slowfast)
这里先声明一下本项目是基于做的一个二次开发,也就是进行一个项目改造,同时针对原项目进行优化。在原项目中,采用单线程流线操作,导致无法进行真正的实时的多目标在线检测。只能通过已有的视频文件进行检测。同时在运算过程中,计算资源消耗较大,在进行真正的在线推理时将导致卡顿。为此,为了能够更好地是完成任务。本文博主,在花费一天的时间仔细阅读其源码后,进行了新一轮的定制修改。同时,这里我将前天做好的人脸检测模块一起放置在了这里:里面包含了完整的权重文件,无需进行下载新的权重文件。原创 2023-03-20 18:00:20 · 4966 阅读 · 56 评论 -
多目标家庭行为检测--人脸识别模块构建
2023-3-18 天小雨,午觉舒适程度5颗星。任务完成指数2颗星。《MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)》,我们这边需要实现的是一个多目标的检测,并且我们期望能够适用在家庭这里领域,因此,在前者算法改进的基础上,我们还需要加入这个人脸识别模块。调某度这些现成的开发的API当然可以,但是自己搭建价更高,能装13还不用小钱钱,数据牢牢在手,主打的就是一个安全。原创 2023-03-19 00:06:00 · 517 阅读 · 0 评论 -
MidiaPipe +stgcn(时空图卷积网络)实现人体姿态判断(单目标)
冒个泡,年少无知吹完的牛皮是要还的呀。那么这里的话要做的一个东西就是一个人体的姿态判断,比如一个人是坐着还是站着还是摔倒了,如果摔倒了我们要做什么操作,之类的。不过这里比较可惜的就是这个midiapipe 它里面的Pose的话是只有一个pose的也就是单目标的一个检测,所以距离我想要的一个效果是很难受的,不过这个dome还是挺好玩的。原创 2023-03-06 22:26:20 · 1931 阅读 · 17 评论 -
玩转GPT--在线文本生成项目[可入坑~科普系列]
没办法,最近ChatGPT杀疯了,没忍住,还是想look,look。没办法,哪个帅小伙能够忍受的了一个可以和自己对话的神奇的玩意儿。而且还是近距离去接触这个东西,如果你对自己的设备还有足够自信的话,咱们还能够给自己重新训练出一个模型,或者自己准备数据集,然后训练自己的“贾维斯”。嘿嘿,想想,这可比女朋友有意思多了!同时也作为一个跨年博文,咱们新的一年可以玩点儿别的东西。并且不要担心,这是一篇面向大众的“科普”难度的文章,只需要按照文章进行操作即可。原创 2022-12-25 17:19:49 · 5369 阅读 · 2 评论 -
前沿系列--Transform架构[架构分析+代码实现]
Transform这玩意的大名我想就不用我多说了。那么我们今天要做的就是对Transform架构进行了解,并且使用Pytorch进行一个编写实现。(其实这边博文的话很早之前就差不多写好了,但是话我本人喜欢做一个系列就一直没发布)由于描述的是一种架构,因此好消息是,对于新的理论部分没有啥要求。但是坏消息是,需要一定的前期知识储备。原创 2022-12-22 18:17:36 · 1524 阅读 · 1 评论 -
前沿系列--Word2Vector[基础须知-附代码]
还在调API写所谓的AI“女友”,唠了唠了,教你基于python咱们“new”一个(深度学习)说实话,压根没打算就说像以前写的YOLO系列一样,因为这里面涉及到的前期准备工作和后面的一些东西就是给那些有NLP基础懂点这玩意的小伙伴的一个稍微完整一点的dome。也就是说默认你是知道的,我只是提一下里面比较关键的点(而且当时为了便于理解也做了不少妥协)。所以这就给我填坑的机会(水博文)。那么今天就略微详细一点儿儿去说一下这玩意。原创 2022-12-18 17:53:57 · 521 阅读 · 0 评论 -
前沿系列--简述Diffusion Model 扩散模型(无代码版本)
OK,今天的话,我们来搞一下这个扩散模型,来对这个玩意进行一个简单的了解,因为这个也是目前还算比较前沿的东西,也挺有用的,当然我这边和RL一样,我喜欢用来做优化,完成任务,单纯用来做生成se图是在是没什么意思(狗头)当然也是没办法,如果连这个都不去了解的话,咱们在AI领域是没法混了,得多少了解一下。那么在开始之前的话,我们还是需要去了解一下这个GAN网络。这个的话,我这边是没有写过专门介绍GAN的文章,这个自己去找一下,原理其实还是很好理解的。PSO算法(优化与探索四*DDPG与GAN)原创 2022-12-16 16:49:32 · 767 阅读 · 1 评论 -
胡扯系列之私人AI助手系统的分析与设计
随着时代的发展,计算机算力的提升和近些年来AI模型的井喷以及发展。人工智能应用已经深入我们的日常生活。如人脸识别,无人驾驶等等,同时为了更好地与用户进行交互,完成特定功能,智能对话助手应运而生。如今大量智能移动设备已经搭配具备对话,实现特定功能的AI助手用于提高用户使用体验。但目前大量的AI助手只是具备简单的对话和应用操作等基本功能,并不能对使用者的操作习惯,会话习惯等进行自适应调节,使得助手更加适配与当前使用者。原创 2022-12-08 22:49:54 · 1296 阅读 · 0 评论 -
白话强化学习(理论+代码)
昨天无意中翻了翻以前的博文,发现关于强化学习部分的理论部分说的不是很清晰,属于那种懂得都懂,不懂的很难懂的那种。所以的话刚好趁期末有点空复习,那么把这个简要补充一下吧。从最基础的地方重新开始讲起吧,那么本文的话也是会将看起来比较复杂的概念进行简化,但是本文当中还是会有的,但是你可以选择性忽略,或者自行加一个补充。。那么本文目标啥呢强化学习的概念强加学习的特征理解马尔科夫决策bellman方程是啥Q-learnDQN。原创 2022-12-02 22:55:59 · 2361 阅读 · 0 评论 -
还在调API写所谓的AI“女友”,唠了唠了,教你基于python咱们“new”一个(深度学习)
诶,标题有点欠揍是吧。好吧承认有点标题党了,拖更大王要更新了。快速构建一个简单的对话+问答AI (上)过来的。好吧被你发现了,我是把中间那一段拆开来了。好吧,之所以这样做其实还是因为那篇文章是在是太长了,没写清楚,同时每一个模块都是独立的,因此的话咱们专门拆开来再说下是咋干的。咱们这是一篇独立的博文,那么为啥要独立捏,因为我知道你可能并不需要一个比较完整的内容,如果你关注的是如何实现一个对话AI的话,那么来这里就对了。我们将单独从数据集开始再讲起。并且将真正完整的代码直接在咱们的博文当中贴出了。原创 2022-11-24 19:58:34 · 4019 阅读 · 3 评论 -
快速构建一个简单的对话+问答AI (上)
okey,许久不见甚是想念,那么今天的话也是来开启一个新的一个章节吧。当然承认最近是有在划水,但是问题不大。那么今天的话咱们就是来填一填以前的坑,吹过的牛皮总还是要实现的。那么在这边咱们的目的是实现出一个简单一点的AI助手,通过我们的文本来实现一些对话,问答之类的一些处理。从基础部分,一步一步实现一个这样的小AI,在未来你还可以打造属于自己的一个数据集,同时在这个架构的基础上不断优化,在未来的某一天也许是有机会得到一个专属于你的一个AI对象的。所以咱们今天给出的还是一个baseline。同时本文的风格也是慢原创 2022-11-24 17:21:19 · 2486 阅读 · 0 评论 -
胡扯推荐算法(协同)及其dome实现
打瞌睡遇到送枕头的感觉真爽嘿嘿@BoyC啊废话不多说,开始吧。推荐系统(Recommendation System, RS),就是根据用户的日常行为,自动预测用户的喜好,为用户提供更多完善的服务。原创 2022-11-06 23:03:37 · 866 阅读 · 0 评论 -
轻松解决TSP问题之强化学习(BaseLine)
由于这个时间关系(好吧其实是我懒),咱们的话就只写了这个最简单的一个BaseLine版本。那么后面还有Lite,Plus版本,区别的话就是神经网络模型的一个区别,其他的思想都是一样的。那么为什么不写后面的版本呢,一方面是懒,另一方面是,这样搞,我后面怎么水呀。而且一步到位的话,这个阅读量还是挺大的。那么后续的版本什么时候更新呢,这个不急,而且改进的点也很简单。那么本文也是,TSP系列的第三篇文章,也是作为一个拓展文章,那么关于原理部分的话,这里就不细说了,需要一定的基础进行观看。原创 2022-10-23 21:55:05 · 1281 阅读 · 6 评论 -
如何使用Python轻松解决TSP问题(PSO算法)
先前我们给出了遗传算法的解决方案,那么同样的我们,给出使用PSO的解决方案。其实对PSO算法比较了解的小伙伴应该是知道的,这个PSO其实是比较适合解决连续问题的。而我们的TSP问题显然是一个离散的问题。那么如何将连续问题转化为离散问题呢,那么这个时候其实有一个方案就是使用广义PSO算法。其实除了这个方案,我自己其实也有一个方案,这个方案基本上应该是通用的可以将连续问题转化为离散问题。原创 2022-10-14 11:29:13 · 4816 阅读 · 0 评论 -
如何使用Python轻松解决TSP问题(遗传算法)
临时接到一个分支任务,那就是解决TSP问题,来作为人工智能课程的期中测试。是的这不时巧了嘛,我Hou(第三声)恰好略懂一二。那么今天的话,咱们就用好几个方案来解决这个问题吧,首先是咱们的遗传算法,之后是咱的PSO算法,最后是咱们的一个衍生想法,就是使用强化学习来做(这里选取的是DQN,我们采用3个网络并行解决问题),同样我们分三篇博文说明。这个是咱们最简单的遗传算法版本,其实后面的这个PSO版本也简单,也要用到遗传的部分。那么DQN的部分其实也简单,当然难一点的是并行编程(懂原理的情况下)。原创 2022-10-12 22:30:54 · 3663 阅读 · 1 评论 -
WhiteHoleV0.7实战开发(一)>>你的下一个项目为何不可基于SpringCloud
不出意外,这个应该是本科阶段最后一个大型web项目了,我们的期望是两个方面:1. Java部分基于SpringCloud打造一个真正意义上的分布式微服务项目完成完整的流程开发,整合目前企业里面的主流技术从调试环境上传至生产环境,涵盖测试,上线,服务监控,运维并部署至K8s服务集群2 .Python部分我们期望基于机器学习完成用户内容推荐基于NLP完成对博文内容的自动化审核在趣味模块上线有关于人工智能的小dome前端部分基于vue+elementUI 完成PC端的搭建。原创 2022-09-10 19:54:45 · 476 阅读 · 0 评论 -
如何分分钟理解SVM(中文版)
先前我们已经说了说了一下SVM算法,并且简单的实现了一下SVM算法,但是先前的版本是英文版本的,所以现在开放中文版。由于先前的英文版本是自己直接硬写的,然后自行查词汇,词典写出来的,但是受限于自己的水平,所以有很多问题,可能连表述也具备误导性,因此现在开放中文版本,并且对先前的一些内容进行补充说明。1. SVM基本数学推导2. 基于Python实现SVM算法拉格朗日高数求导(偏导)基本几何空间向量知识Python基础语法逻辑抽象能力。...原创 2022-08-30 19:22:14 · 626 阅读 · 0 评论 -
What is SVM algorithm
SVM算法数学原理手动编写SVM算法Sklearn中的SVM算法案例原创 2022-08-22 13:02:20 · 671 阅读 · 2 评论 -
Super easy to understand decision trees (part one)
【代码】Super easy to understand decision trees (part one)原创 2022-08-20 05:30:00 · 517 阅读 · 1 评论 -
目标跟踪实战deepsort+yolov5(上)
今天的主要目的还是快速上手目标跟踪,先前的话我是简单说了一下卡尔曼滤波,然后由于博客的问题,没有说完。本来是想做一个系列的,但是很难整理,而且说实话有些东西我也没搞清楚。当然这并不影响我们使用,抽象一下继续happy,就像你不懂SpringBoot 或者Django底层一样,还是阔以做出一个网站的。首先我们这边的话其实整个项目呢,是两个部分,一个是目标的追踪部分,还有一个是目标的识别检测部分。我们要先检测出来一个物品,我们才能去跟踪,同时这个算法也是基于目标检测算法来的。...原创 2022-08-06 16:37:21 · 8038 阅读 · 1 评论 -
卡尔曼滤波器(目标跟踪一)(上)
本文主要是针对目标跟踪算法进行一个学习编码,从比较简单的卡尔曼滤波器开始,到后面的deepsort 和最后与yolo算法进行整合,到最后手动实现目标跟踪框架的流程进行。本着,无法造轮子就没有彻底理解的原则进行学习。那么废话不多说开始了。VIP:Free,白嫖可耻,拒接白嫖)...原创 2022-08-04 16:14:51 · 5343 阅读 · 2 评论 -
手把手教你如何自制目标检测框架(从理论到实现)
好久没有冒泡了,是时候来波大的了,也是由于特殊需求,不得不重启关于目标检测的一些内容。既然如此,那么刚好把以前要做的yolo目标检测相关的代码进行复现,并且好好把这个目标检测说清楚一点儿。此外本文基于Pytorch进行编写,有空后期tensorflow也可以试试。GitHub水项目之快速上手YOLOV5YOLOV5参数设定与模型训练的坑点一二三YOLOV1论文小整理嘿~全流程带你基于Pytorch手撸图片分类“框架“–HuClassify那么本文两个目标一.理论搞清楚什么是目标检测。......原创 2022-08-01 16:05:26 · 3389 阅读 · 4 评论 -
CEC2017基础函数说明Python版本
撑得慌,拿来练练手。部分函数没有实现,因为比较麻烦。我这边玩的话,也是直接拿这个玩,因为实际上他们玩的时候因该是加了偏置转换的,像cec2003好像都是没有偏置的。反正都能够说明问题,管你那么多。...原创 2022-07-18 10:50:59 · 4456 阅读 · 7 评论 -
智能算法集成测试平台V0.1实战开发
兜兜转转了一圈,想要和其他的粒子群算法做个对比测试,结果发现,那帮西崽木得代码,python没有也就算了,俩matlab都找不到,找到了还要钱,好家伙,看不起谁丫?!虽然有一些python的智能算法库,但是要么就是集成的太多,没有专门正对PSO的一些变体进行集成,虽然有一个专门搞PSO的库,但是,那玩意就集成了一个算法,核心文件就一个PSO。所以,既然没有,那么我就自己造个轮子先看看,而且我觉得,如果论文没给代码的,我觉得这种论文要么就是有鬼,要么就是S13写的,少看,那些期刊的评审真的也需要擦亮眼睛看看,原创 2022-07-05 01:01:05 · 919 阅读 · 0 评论 -
PSO算法(优化与探索四*DDPG与GAN)
今天怎么说干的事情不多,一方面是因为看了一篇论文,关于RLPSO的是今年6月3日出来的新的文章《Reinforcement learning based parameters adaption method for particleswarm optimization》里面提到了不少关于PSO的优化,然后提出了一种基于强化学习的PSO,通过预训练一个神经网络,输入当前的粒子状态,得到一组参数 w,c1,c2。然后做出调整,因为粒子群,包括遗传,EDA 等等对参数的设置是比较敏感,所以你懂的,用深度学习去搞原创 2022-06-23 21:43:41 · 1623 阅读 · 23 评论 -
基于多种群机制的PSO算法(优化与探索三 *混合种群思想优化多种群与广义PSO求解JSP)
本来今天是想要继续研究研究多种群的,但是怎么说心累,于是就想到先找到一个问题,来看看做优化。然后也是,想到先前被同学点了一下,仔细思考了一下如何用PSO解决这种非连续性,带有序号的问题?所以今天做了两件事。日期:2022.6.22 DAY 3原来我一直是采用这个方程来做速度更新的,也就是参考一篇好老的文献。但是效果并不是很理想,不过在高纬度下还可以和最基础的PSO有更好一点的优势,而且运算量只是大了一点。所以这里也是不知道哪里看到了一篇文章,无意中一撇。于是我继续采用原来的速度方程,然后,这样一改。也就原创 2022-06-22 23:15:04 · 649 阅读 · 0 评论 -
基于多种群机制的PSO算法Python实现
当前还是正对单目标算法的优化,目的是为了能够避免由于单目标算法本身的局限性导致多目标的效果骤降。本次代码采用Python实现,后期将转移至Flink 平台。这里我参考了四篇论文,于是我这里提出了三个优化想法,这里先实现两个版本.日期:2022.6.20 DAY 1先基于非矩阵运算实现最基本的PSO算法基于第三个引用实现最简单的算法。这个其实在PSO实现了,但是这个后面我想上强化学习优化,所以还得单独搞成python的。ok ,先来看到今天的第一个工作点,传统的最基础的在1995年提出的算法。整个项目结构如原创 2022-06-20 23:09:03 · 619 阅读 · 0 评论 -
基于Pytorch的YoLoV5 backbone 复现(上)
文章目录前言V5 数据增强前言通过昨天和今天的努力终于是把Yolo系列的论文搞完了,大体的流程,残差的设定都差不多了,包括里面的anchor,正样本,darknet53,里面的损失函数,正样本之类的设定基本上流程是搞懂了,相关的内容也在做整理,现在是进入编码阶段。因为未来的话还是需要使用yolo去整合其他的神经网络去实现我想要的功能。前天晚上加昨天上午,也是从头开始去看看了这个复旦大学的一个和公开课16小时,课程体系和吴恩达的有点像,只是没有吴恩达细致,开拓了不少视野。还发现了一个贼有意思的玩意hopf原创 2022-05-26 16:34:28 · 1232 阅读 · 1 评论 -
基于Flink的并行多种群PSO算法实现
文章目录前言适应人群参考文献算法流程新流程老代码前言这个呢,其实是昨天突然被启发了一下然后去找了一下发现了一个玩意叫做多种群的遗传算法,于是引发了我的思考,为什么要引入多种群的概念,这个就不得不分析一下标准的GA算法也就是SGA,这个玩意有个毛病,如果当种群当中的某个基因忒多了,那么这个时候(假设还没有到达迭代次数)你会发现后面种群能不能有多样性全靠变异,出现局部收敛等等问题(这里我就不复述了,其实很早以前我写遗传算法的时候就说过了这个他的优化,例如EA,MOEA 等等)。不过这个并不是今天的主角,今天原创 2022-05-23 20:25:07 · 2567 阅读 · 0 评论 -
GANKMeans基于GAN的聚类复合算法假想
文章目录前言原理编码效果前言这个是继续上一个猜想进行的编码研究,有没有类似的论文这个我不太清楚,在知网我是找到了一篇有使用GAN+KMeans的图片分类算法的。不过这个还是有不少差别的。原理所有我这样设计。我同样保留一开始的欧氏距离Kmeans,再学习的过程当中去训练我的GAN网络。当发现我们的距离无法工作的时候,我们使用GAN。换一句话说,俺们这个其实是个复合算法。那么问题来了,为什么用神经网络?其实分类问题,你发现其实它背后是有个”隐藏“逻辑的。我们一开始使用的是距离公式,也就是说我们期望找原创 2022-05-23 16:56:19 · 598 阅读 · 0 评论