1.图的定义和基本术语
1.1 图的定义
图G由两个集合V和E组成,记为 G = ( V , E ) G=(V,E) G=(V,E),其中V是顶点的有穷非空集合,E是V中顶点偶对的有穷集合,这些顶点偶对称为边。 V ( G ) V(G) V(G)和 E ( G ) E(G) E(G)通常分别表示图G的顶点集合和边集合, E ( G ) E(G) E(G)可以为空集。若 E ( G ) E(G) E(G)为空,则图G只有顶点而没有边。对于图G,若边集 E ( G ) E(G) E(G)为有向边的集合,则称该图为有向图;若边集 E ( G ) E(G) E(G)为无向边的集合则称该图为无向图。
1.2 图的基本术语
(1)子图:假设有两个图 G = ( V , E ) G=(V,E) G=(V,E)和 G ′ = ( V , E ) G'=(V,E) G′=(V,E),如果 V ′ ⊆ V V' \subseteq V V′⊆V且 E ′ ⊆ E E' \subseteq E E′⊆E,则称 G ′ G' G′为 G G G的子图。
(2)无向完全图和有向完全图:对于无向图,若具有n(n-1)/2条边,则称为无向完全图。对于有向图,若具有n(n-1)条弧,则称为有向完全图。
(3)稀疏图和稠密图:有很少条边或弧(如 e < n l o g 2 n e<nlog_2n e<nlog2n)的图称为稀疏图,反之称为稠密图。
(4)权和网:在实际应用中,每条边可以标上具有某种含义的数值,该数值称为该边上的权。这些权可以表示从一个顶点到另一个顶点的距离或耗费。这种带权的图通常称为网。
(5)邻接点:对于无向图G,如果图的边 ( v , v ′ ) ∈ E (v,v') \in E (v,v′)∈E,则称顶点 v v v和 v ′ v' v′互为邻接点,即 v v v和 v ′ v' v′相邻接。边 ( v , v ′ ) (v,v') (v,v′)依附于顶点 v v v和 v ′ v' v′,或者说边 ( v , v ′ ) (v,v') (v,v′)与顶点 v v v和 v ′ v' v′相关联。
(6)度、入度和出度:顶点 v v v的度是指和 v v v相关联的边的数目,记为 T D ( v ) TD(v) TD(v)。入度是以顶点 v v v为头的弧的数目,记为 I D ( v ) ID(v) ID(v);出度是以顶点 v v v为尾的弧的数目,记为 O D ( v ) OD(v) OD(v)。顶点 v v v的度为 T D ( v ) = I D ( v ) + O D ( v ) TD(v)=ID(v)+OD(v) TD(v)=ID(v)+OD(v)。一般,如果顶点为 v i v_i vi的度记为 T D ( v i ) TD(v_i) TD(vi