- 结果填空 (满分5分)
- 结果填空 (满分7分)
- 结果填空 (满分13分)
- 结果填空 (满分17分)
- 代码填空 (满分9分)
- 程序设计(满分11分)
- 程序设计(满分19分)
- 程序设计(满分21分)
- 程序设计(满分23分)
- 程序设计(满分25分)
第一题:第几天
2000年的1月1日,是那一年的第1天。
那么,2000年的5月4日,是那一年的第几天?
注意:需要提交的是一个整数,不要填写任何多余内容。
【答案】:125
【解析】:31 + 29 + 31 + 30 + 4 == 125
第二题:方格计数
如图p1.png所示,在二维平面上有无数个1x1的小方格。
p1.png
我们以某个小方格的一个顶点为圆心画一个半径为1000的圆。
你能计算出这个圆里有多少个完整的小方格吗?
注意:需要提交的是一个整数,不要填写任何多余内容。
public class Main {
public static void main(String[] args) {
int count = 0;
for (int x = 0; x <= 1000; x++) {
for (int y = 0; y <= 1000; y++) {
if ((x + 1) * (x + 1) + (y + 1) * (y + 1) <= 1000 * 1000) {
count++;
}
}
}
System.out.println(count * 4);
}
}
第三题:复数幂
设i为虚数单位。对于任意正整数n,(2+3i)^n 的实部和虚部都是整数。
求 (2+3i)^123456 等于多少? 即(2+3i)的123456次幂,这个数字很大,要求精确表示。
答案写成 "实部±虚部i" 的形式,实部和虚部都是整数(不能用科学计数法表示),中间任何地方都不加空格,实部为正时前面不加正号。(2+3i)^2 写成: -5+12i,
(2+3i)^5 的写成: 122-597i
注意:需要提交的是一个很庞大的复数,不要填写任何多余内容。
import java.io.File;
import java.io.PrintStream;
import java.math.BigInteger;
public class Main {
public static void main(String[] args) throws Exception {
BigInteger two = BigInteger.valueOf(2);
BigInteger three = BigInteger.valueOf(3);
BigInteger a = BigInteger.valueOf(2);
BigInteger b = BigInteger.valueOf(3);
BigInteger aa = null;
BigInteger bb = null;
for (int i = 0; i < 123455; i++) {
aa = a.multiply(two).subtract(b.multiply(three)); // a*2-(b*3)
bb = a.multiply(three).add(b.multiply(two));
a = aa;
b = bb;
}
System.setOut(new PrintStream(new File("D:\\out.txt")));
System.out.println(aa + (bb.compareTo(BigInteger.ZERO) > 0 ? "-" : "+") + bb + "i");
}
}
第四题:测试次数
x星球的居民脾气不太好,但好在他们生气的时候唯一的异常举动是:摔手机。
各大厂商也就纷纷推出各种耐摔型手机。x星球的质监局规定了手机必须经过耐摔测试,并且评定出一个耐摔指数来,之后才允许上市流通。
x星球有很多高耸入云的高塔,刚好可以用来做耐摔测试。塔的每一层高度都是一样的,与地球上稍有不同的是,他们的第一层不是地面,而是相当于我们的2楼。
如果手机从第7层扔下去没摔坏,但第8层摔坏了,则手机耐摔指数=7。
特别地,如果手机从第1层扔下去就坏了,则耐摔指数=0。
如果到了塔的最高层第n层扔没摔坏,则耐摔指数=n
为了减少测试次数,从每个厂家抽样3部手机参加测试。
某次测试的塔高为1000层,如果我们总是采用最佳策略,在最坏的运气下最多需要测试多少次才能确定手机的耐摔指数呢?
请填写这个最多测试次数。
注意:需要填写的是一个整数,不要填写任何多余内容。
答案:19
public class Main {
public static void main(String[] args) {
int[][] d = new int[1001][4]; // 有j个鸡蛋测试i层楼需要扔几次
for (int i = 1; i <= 1000; i++) {
d[i][1] = i; // 1个鸡蛋扔i次可以测试i层楼
}
for (int i = 1; i <= 1000; i++) {
int min = Integer.MAX_VALUE;
for (int j = 1; j <= i; j++) {
min = Math.min(min, Math.max(j, d[i - j][2] + 1));
}
d[i][2] = min;
}
for (int i = 1; i <= 1000; i++) {
int min = Integer.MAX_VALUE;
for (int j = 1; j <= i; j++) {
min = Math.min(min, Math.max(d[j - 1][2] + 1, d[i - j][3] + 1));
}
d[i][3] = min;
}
System.out.println(d[1000][3]);
}
}
第五题:快速排序
以下代码可以从数组a[]中找出第k小的元素。
它使用了类似快速排序中的分治算法,期望时间复杂度是O(N)的。
请仔细阅读分析源码,填写划线部分缺失的内容。
import java.util.Random;
public class Main{undefined
public static int quickSelect(int a[], int l, int r, int k) {undefined
Random rand = new Random();
int p = rand.nextInt(r - l + 1) + l;
int x = a[p];
int tmp = a[p]; a[p] = a[r]; a[r] = tmp;
int i = l, j = r;
while(i < j) {undefined
while(i < j && a[i] < x) i++;
if(i < j) {undefined
a[j] = a[i];
j--;
}
while(i < j && a[j] > x) j--;
if(i < j) {undefined
a[i] = a[j];
i++;
}
}
a[i] = x;
p = i;
if(i - l + 1 == k) return a[i];
if(i - l + 1 < k) return quickSelect( _________________________________ ); //填空
else return quickSelect(a, l, i - 1, k);
}
public static void main(String args[]) {undefined
int [] a = {1, 4, 2, 8, 5, 7};
System.out.println(quickSelect(a, 0, 5, 4));
}
}
注意:只提交划线部分缺少的代码,不要抄写任何已经存在的代码或符号
【答案】:a, i + 1, r, k - (i - l + 1)
第六题:递增三元组
给定三个整数数组
A = [A1, A2, ... AN],
B = [B1, B2, ... BN],
C = [C1, C2, ... CN],
请你统计有多少个三元组(i, j, k) 满足:
1. 1 <= i, j, k <= N
2. Ai < Bj < Ck
【输入格式】
第一行包含一个整数N。
第二行包含N个整数A1, A2, ... AN。
第三行包含N个整数B1, B2, ... BN。
第四行包含N个整数C1, C2, ... CN。
对于30%的数据,1 <= N <= 100
对于60%的数据,1 <= N <= 1000
对于100%的数据,1 <= N <= 100000 0 <= Ai, Bi, Ci <= 100000
【输出格式】
一个整数表示答案
【输入样例】
3
1 1 1
2 2 2
3 3 3
【输出样例】
27
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
Arrays.parallelSort(a);
int b[] = new int[n];
for (int i = 0; i < n; i++) {
b[i] = sc.nextInt();
}
Arrays.parallelSort(b);
int c[] = new int[n];
for (int i = 0; i < n; i++) {
c[i] = sc.nextInt();
}
Arrays.parallelSort(c);
int ans = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
if (a[i] < b[j] && b[j] < c[k])
ans++;
}
}
}
System.out.println(ans);
}
}
第七题:螺旋折线
如图p1.pgn所示的螺旋折线经过平面上所有整点恰好一次。
对于整点(X, Y),我们定义它到原点的距离dis(X, Y)是从原点到(X, Y)的螺旋折线段的长度。
例如dis(0, 1)=3, dis(-2, -1)=9
给出整点坐标(X, Y),你能计算出dis(X, Y)吗?
【输入格式】
X和Y
对于40%的数据,-1000 <= X, Y <= 1000
对于70%的数据,-100000 <= X, Y <= 100000
对于100%的数据, -1000000000 <= X, Y <= 1000000000
【输出格式】
输出dis(X, Y)
【输入样例】
0 1
【输出样例】
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理
import java.io.FileNotFoundException;
import java.util.Scanner;
public class Main {
// 以 右下角 对角线上的点 为 参照点,测算给定的点到参照点要走的距离
public static void main(String[] args) throws FileNotFoundException {
Scanner sc = new Scanner(System.in);
long X = sc.nextLong(), Y = sc.nextLong();
long d = 0; // 距离
long n = 0; // 第几圈
if (Y > 0 && Math.abs(X) <= Y) { // 点在上面的横线上
n = Y; // 等差数列有多少项? Y项
d = (Y - X) + (2 * Y); // X的最大值是Y,第一、四象限的距离---2Y
} else if (X > 0 && Math.abs(Y) <= X) { // 点在最右边的横线上
n = X;
d = Y + X;
} else if (Y <= 0 && X >= Y - 1 && X <= -Y) { // 点在最下边的横线上
n = -Y;
d = -(-Y - X);
} else if (X < 0 && Y >= X + 1 && Y <= -X) { // 点在最左边的横线上
n = -X - 1;
d = -(Y - X - 1 - 2 * X - 1);
}
System.out.println(sum(1L, 2 * n, 1) * 2 - d);
}
/**
* 等差数列求和
*
* @param a0 首项
* @param n 项数
* @param d 公差
* @return
*/
private static long sum(long a0, long n, int d) {
return (2 * a0 + (n - 1) * d) * n / 2;
}
}
第八题:日志统计
小明维护着一个程序员论坛。现在他收集了一份"点赞"日志,日志共有N行。其中每一行的格式是:
ts id
表示在ts时刻编号id的帖子收到一个"赞"。
现在小明想统计有哪些帖子曾经是"热帖"。如果一个帖子曾在任意一个长度为D的时间段内收到不少于K个赞,小明就认为这个帖子曾是"热帖"。
具体来说,如果存在某个时刻T满足该帖在[T, T+D)这段时间内(注意是左闭右开区间)收到不少于K个赞,该帖就曾是"热帖"。
给定日志,请你帮助小明统计出所有曾是"热帖"的帖子编号。
【输入格式】
第一行包含三个整数N、D和K。
以下N行每行一条日志,包含两个整数ts和id。
对于50%的数据,1 <= K <= N <= 1000
对于100%的数据,1 <= K <= N <= 100000 0 <= ts <= 100000 0 <= id <= 100000
【输出格式】
按从小到大的顺序输出热帖id。每个id一行。
【输入样例】
7 10 2
0 1
0 10
10 10
10 1
9 1
100 3
100 3
【输出样例】
1
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
import java.util.SortedSet;
import java.util.TreeSet;
public class Main {
// 存日志数据, ts-td分别是时刻及id,组合成对象, 存储在R中
static class R { // 定义内部类
int ts, td;// 时刻及id
}
public static void main(String[] args) throws FileNotFoundException {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt(), D = sc.nextInt(), K = sc.nextInt();
R[] rs = new R[N];
for (int i = 0; i < N; i++) {// 读取日志数据
R r = new R();
r.ts = sc.nextInt();
r.td = sc.nextInt();
rs[i] = r;
}
// 匿名内部类 定义 排序器 自定义 比较器
Arrays.sort(rs, new Comparator<R>() {
// 按照时刻ts对一个记录R做升序排序
@Override
public int compare(R r1, R r2) {
return r1.ts - r2.ts;
}
});
// cnt: 用于给id计数 记录id及其出现的次数
Map<Integer, Integer> cnt = new HashMap<Integer, Integer>();
// answers: 用于存储答案(各个id), 因为要求答案输出有序, 这里直接用TreeSet
SortedSet<Integer> answers = new TreeSet<Integer>();
// 尺取法【通常是:双指针】
int j = 0;// 移动哨兵---用于探测的指针
for (int i = 0; i < N; ++i) {// i: 尺取法的起点---头部
// 循环条件: i指向的时刻-i指向的时刻 < D
while (j < N && rs[j].ts - rs[i].ts < D) {
int td = rs[j].td;
Integer exist = cnt.get(td);
// 每一次循环,都要统计id,计数
if (exist != null) {
cnt.put(td, exist + 1);
} else {
cnt.put(td, 1);// id第一次出现
}
// 判断id数是否 >= K【判断是否满足条件】id放入answers中
if (cnt.get(td) >= K) {
answers.add(td);
}
j++;
}
// (马上i就要更新了)将上一个i对应的id的计数-1
// 上一个区间, td的计数要扣除, 不干扰下一个区间的统计
Integer cntOfI = cnt.get(rs[i].td);
if (cntOfI != null) {
cnt.put(rs[i].td, cntOfI - 1);
}
}
// 输出答案---输出各个id
for (Integer i : answers) {
System.out.println(i);
}
}
}
第九题:全球变暖
你有一张某海域NxN像素的照片,"."表示海洋、"#"表示陆地,如下所示:
.......
.##....
.##....
....##.
..####.
...###.
.......
其中"上下左右"四个方向上连在一起的一片陆地组成一座岛屿。例如上图就有2座岛屿。
由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。具体来说如果一块陆地像素与海洋相邻(上下左右四个相邻像素中有海洋),它就会被淹没。
例如上图中的海域未来会变成如下样子:
.......
.......
.......
.......
....#..
.......
.......
请你计算:依照科学家的预测,照片中有多少岛屿会被完全淹没。
【输入格式】
第一行包含一个整数N。 (1 <= N <= 1000)
以下N行N列代表一张海域照片。
照片保证第1行、第1列、第N行、第N列的像素都是海洋。
【输出格式】
一个整数表示答案。
【输入样例】
7
.......
.##....
.##....
....##.
..####.
...###.
.......
【输出样例】
1
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.PrintStream;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
static int[] dx = { -1, 1, 0, 0 }; // 四个方向 预定义数组
static int[] dy = { 0, 0, -1, 1 }; // 四个方向
private static int N; // 数据规模
private static char[][] g; // 地图数据
private static int[][] mark; // 标记数组 标记每个格子是否被访问
private static int ans; // 结果:被完全淹没的岛屿数量
// 自定义Point类型,存储一个格子的横纵坐标
private static class Point {
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
}
public static void main(String[] args) throws FileNotFoundException {
// System.setIn(new FileInputStream(new File(("E:\\in9.txt"))));
Scanner sc = new Scanner(System.in);
N = sc.nextInt();
sc.nextLine(); // 读取换行符
// 初始化地图数据与标记数组
g = new char[N][N];
mark = new int[N][N];
// 读取地图数据
for (int i = 0; i < N; i++) {
g[i] = sc.nextLine().toCharArray();
}
// 双循环检验#,从#开始宽度优先搜索
// 双重循环检验地图上的各个格子,以未被访问的#为起点,做宽搜
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (g[i][j] == '#' && mark[i][j] == 0) {
bfs(i, j); // 做标记 访问过的格子不再被访问
}
}
}
System.out.println(ans);
}
private static void bfs(int x, int y) {
mark[x][y] = 1; // 标记 格子 为 已访问
int cntOfBlock = 0; // 记录#陆地的数量
int cntOfSwed = 0; // 记录和.相邻的#的数量 将被淹没的陆地的数量
Queue<Point> queue = new LinkedList<Point>();// 新建队列
queue.add(new Point(x, y)); // 将当前格子封装到point,插入队列
while (!queue.isEmpty()) {
Point first = queue.poll(); // 弹出头部
cntOfBlock++;
boolean swed = false; // 标记弹出的#四周是否有.
// 探测四周
for (int d = 0; d < 4; d++) {
int nx = first.x + dx[d];
int ny = first.y + dy[d];
if (0 <= nx && nx < N && 0 <= ny && ny < N) {
if (g[nx][ny] == '.') {
swed = true; // 周边有一个.这块陆地就会被淹没,避免重复计数
}
if (g[nx][ny] == '#' && mark[nx][ny] == 0) { // 且‘#’没有被访问
queue.add(new Point(nx, ny));
mark[nx][ny] = 1;
}
}
}
// 陆地数量 与 被淹没陆地数量 相同,ans++
if (swed) {
cntOfSwed++;
}
}
// 一个连通块就被访问完了, 块中#的数量记录在cnt1, 周边有.的#的数量记录在cnt2
if (cntOfBlock == cntOfSwed) {
ans++;
}
}
}
第十题:堆的计数
我们知道包含N个元素的堆可以看成是一棵包含N个节点的完全二叉树。
每个节点有一个权值。对于小根堆来说,父节点的权值一定小于其子节点的权值。
假设N个节点的权值分别是1~N,你能求出一共有多少种不同的小根堆吗?
例如对于N=4有如下3种:
1
/ \
2 3
/
4
1
/ \
3 2
/
4
1
/ \
2 4
/
3
由于数量可能超过整型范围,你只需要输出结果除以1000000009的余数。
【输入格式】
一个整数N。
对于40%的数据,1 <= N <= 1000
对于70%的数据,1 <= N <= 10000
对于100%的数据,1 <= N <= 100000
【输出格式】
一个整数表示答案。
【输入样例】
4
【输出样例】
3
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
import java.util.Scanner;
public class Main {
static final int MOD = 1000000009;
public static int N;
static int[] size; // 记录每个节点的size
static long[] jie; // 记录1~N的阶乘
static long[] ni; // 记录1~N的阶乘的逆元(关于MOD)
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
N = sc.nextInt();
size = new int[N + 1];
jie = new long[N + 1];
ni = new long[N + 1];
initSize();
initJie();
System.out.println(dp());
}
private static long dp() {
long[] d = new long[N + 1]; // d[i]表示的是i号节点作为根,小根堆的种数
for (int x = N; x >= 1; x--) {
if (2 * x + 1 <= N)
d[x] = c(size[x] - 1, size[2 * x]) * d[2 * x] % MOD * d[2 * x + 1] % MOD;
else if (2 * x <= N)
d[x] = c(size[x] - 1, size[2 * x]) * d[2 * x] % MOD;
else
d[x] = 1;
}
return d[1];
}
private static void initJie() {
jie[0] = 1;
ni[0] = 1;
for (int i = 1; i <= N; i++) {
jie[i] = jie[i - 1] * i % MOD;
ni[i] = pow(jie[i], MOD - 2);
}
}
/**
* 快速求a的n次方
*
* @param a
* @param n
* @return
*/
private static long pow(long a, int n) {
if (a == 0)
return 0;
long ans = 1;
long x = a;
while (n > 0) {
if ((n & 1) == 1)
ans = ans * x % MOD;
n >>= 1;
x = x * x % MOD;
}
return ans;
}
static long c(int n, int r) {
return jie[n] * ni[r] % MOD * ni[n - r] % MOD;
}
private static void initSize() {
for (int i = N; i >= 1; i--) {
size[i] = (2 * i <= N ? size[2 * i] : 0) + (2 * i + 1 <= N ? size[2 * i + 1] : 0) + 1;
}
}
}