#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
//大整数的存储
struct bign{
int d[1000];
int len;
bign(){
memset(d,0,sizeof(d));
len = 0;
}
};
//输入大整数时,一般都是先用字符串读入,然后再把字符串另存为至bign结构体
//将整数转换为bign
//整数的高位存储在数组的高位,整数的低位存储在数组的低位。
bign change(char str[]){
bign a;
a.len = strlen(str); //bign的长度就是字符串的长度
for(int i=0;i<a.len;i++){
a.d[i] = str[a.len-1-i]-'0'; //逆着赋值,整数的高位存储在数组的高位,整数的低位存储在数组的低位
}
return a;
}
//比较两个bign变量的大小
//比较a和b大小,a大、相等、a小分别返回1、0、-1
//先判断两者的len大小,如果不相等,则以长的为大
//如果相等,则从高位到低位进行比较,直到出现某位不等,就可以判断大小
int compare(bign a,bign b) {
if(a.len>b.len) return 1; //a大
else if(a.len<b.len) return -1; //a小
else{
for(int i=a.len-1;i>=0;i--){//从高位往低位比较
if(a.d[i]>b.d[i]) return 1;//只要有一位a大,则a大
else if(a.d[i]<b.d[i]) return -1;//只要有一位a小,则a小
}
}
return 0;//两数相等
}
//高精度加法 (以下写法的条件是两个对象都是非负整数)
//如果有一方是负的,可以在转换到数组这一步时去掉其负号,然后采用高精度减法
//如果两个都是负的,就都去掉负号后用高精度加法,最后再把负号加回去
//将该位上的两个数字和进位相加,得到的结果取个位数作为该位结果,取十位数作为新的进位
bign add(bign a,bign b){//高精度a+b
bign c; //通过构造函数进行初始化
int carry = 0; //carry是进位
for(int i=0;i<a.len || i<b.len;i++){ //以较长的为界限
int temp = a.d[i]+b.d[i]+carry; //两个对应位与进位相加
c.d[c.len++] = temp % 10; //个位数为该位结果
carry = temp/10; //十位数为新的进位
}
if(carry !=0){//如果最后进位不为0,则直接赋给结果的最高位
c.d[c.len++] = carry;
}
return c;
}
//高精度减法
//对某一步,比较被减位和减位,如果不够减,则令被减位的高位减1、被减位加10再进行减法
//如果够减,则直接减。
//最后一步要注意减法后高位可能有多余的0,要忽视它们,但也要保证结果至少有一位数
//使用sub函数前要比较两个数的大小
//如果被减数小于减数,需要交换两个变量,然后输出负号,再使用sub函数
bign sub(bign a,bign b) {//高精度a-b
bign c;
for(int i=0;i<a.len || i<b.len;i++){//以较长的为界限
if(a.d[i]<b.d[i]){//如果不够减
a.d[i+1]--;//向高位借位
a.d[i] += 10;//当前位加10
}
c.d[c.len++] = a.d[i]-b.d[i]; //减法结果为当前位结果
}
while(c.len-1>=1 && c.d[c.len-1] == 0){
c.len--; //去除高位的0,同时至少保留一位最低位
}
}
void print(bign a){
for(int i=a.len-1;i>=0;i--){
printf("%d",a.d[i]);
}
}
int main(){
char str1[1000],str2[1000];
scanf("%s%s",str1,str2);
bign a = change(str1);
bign b = change(str2);
print(add(a,b));
return 0;
}