上一篇我们看了区间型DP的一道经典入门题——石子归并,这一次同样是类似的一道题——石子归并2
题目链接:wikioi 2102
题干不同之处在于,现在我们的石子不是排成一列了,而是围成一个环,我们要怎么把问题转化成普通的石子归并呢?
其实这是一种挺常见的算法技巧——变环为列
方法:长度为len的环 —> 长度为2*len的列
为什么这样变换是成立的呢?因为每一种截取顺序都可以在变换后的列出现。
通过这样一个方法,把一个环形DP变成了普通的DP了,这样就是普通的石子归并了,状态转移方程是:dp[i][j]=min(dp[i][j] , dp[i][k] + dp[k+1][j] + sum[i:j])
关键代码:
首先是预处理(变环为列……):
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
a[i+n]=a[i];
接下来是记录连续和sum数组:
for(int i=1;i<=2*n;i++)
sum[i]=sum[i-1]+a[i];
DP过程:
for(int len=2;len<=n+1;len++)
{
for(int i=1;i<=2*n-len+1;i++)
{
int j=i+len-1;
for(int k=i;k<j;k++)
{
dp1[i][j]=max(dp1[i][j],dp1[i][k]+dp1[k+1][j]+sum[j]-sum[i-1]);
dp2[i][j]=min(dp2[i][j],dp2[i][k]+dp2[k+1][j]+sum[j]-sum[i-1]);
}
}
}
dp1数组代表最大代价,dp2数组代表最小代价(初始化要注意哦~)
完整的AC代码:
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
int n,a[205],sum[205];
int dp1[205][205],dp2[205][205];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
a[i+n]=a[i];
memset(dp1,0,sizeof(dp1));
memset(dp2,INF,sizeof(dp2));
for(int i=1;i<=2*n;i++)
dp2[i][i]=0;
for(int i=1;i<=2*n;i++)
sum[i]=sum[i-1]+a[i];
for(int len=2;len<=n+1;len++)
{
for(int i=1;i<=2*n-len+1;i++)
{
int j=i+len-1;
for(int k=i;k<j;k++)
{
dp1[i][j]=max(dp1[i][j],dp1[i][k]+dp1[k+1][j]+sum[j]-sum[i-1]);
dp2[i][j]=min(dp2[i][j],dp2[i][k]+dp2[k+1][j]+sum[j]-sum[i-1]);
}
}
}
int minx=INF,maxx=0;
for(int i=1;i<=n;i++)
{
minx=min(minx,dp2[i][i+n-1]);
maxx=max(maxx,dp1[i][i+n-1]);
}
printf("%d\n%d\n",minx,maxx);
return 0;
}
其实这不仅仅是区间DP的例题,而且是环形DP的例题,环形DP的基本思路和解法都是把环转化成普通的列,这种技巧不仅适用于DP,而且适用于各种字符串匹配的题。