OPJ-1067 取石子游戏 解题报告(数论) 取石子游戏,betty定理

Time Limit:1000MS    Memory Limit:10000KB    64bit IO Format:%I64d & %I64u
 

Description

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

Output

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

Sample Input

2 1
8 4
4 7

Sample Output

0
1
0

Hint

 
 
题目大意:中文的= =!自己看了。。。
 
 
 
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
	double alpha = (1.0 + sqrt(5.0)) / 2.0;
	double beta  = (3.0 + sqrt(5.0)) / 2.0;
	int big,small;
	while(cin>>big>>small)
	{
		if(big<small)
			swap(big,small);
		int n= ceil(big/beta);
		int temp1=alpha*n;
		int temp2=beta*n;
		if(small==temp1&&big==temp2)
			cout<<0<<endl;
		else
			cout<<1<<endl;
	}
}

 
大意讲解://下面的内容来自chengmingvictor

先找规律,算几个很小的必败状态
1,2
3,5
4,7
6,10
8,13

发现所有的数恰在序列中出现一次
而且差为1,2,3,4,5,…
所以这两个序列构成正整数集的一个分划,猜想可以由betty定理生成(仅仅是猜想,不需要
太多的理由^_^)
其实,这两个序列恰好对应betty定理中alpha=(1+sqrt(5))/2,beta=(3+sqrt(5))/2的情况,
所以问题解决。

这题不算出公式的话是没法做的,因为规模太大,必败状态太多,没有任何的办法

betty定理是说,如果无理数alpha和beta满足
1.alpha,beta>0
2.1/alpha+1/beta=1
那么,序列{[alpha*n]}和{[beta*n]}构成自然数集的一个分划,其中[]是取整函数

这道题对应的alpha和beta分别是(1+sqrt(5))/2,(3+sqrt(5))/2
所以alpha=1/黄金分割
beta/alpha=黄金分割
可以说跟黄金分割有关,但也只是一种巧合吧,黄金分割还是经常出现的

//————下面是对Betty定理的解释(Traditional BIG5)

貝蒂定理

設a、b是正無理數且 1/a +1/b =1。記P={ [na] | n為任意的正整數},Q={ [nb] | n 為任意的正整數},則P與Q是Z+的一個劃分,即P∩Q為空集且P∪Q為正整數集合Z+。
證明:因為a、b為正且1/a +1/b=1,則a、b>1,所以對於不同的整數n,[na]各不相同,類似對b有相同的結果。因此任一個整數至多在集合P或Q中出現一次。現證明P∩Q為空集;(反證法)假設k為P∩Q的一個整數,則存在正整數m、n使得[ma]=[nb]=k。即k < ma、nb<K+1,等價地改寫不等式為
m/(k+1)< 1/a < m/k及n/(k+1)< 1/a < n/k。相加起來得 (m+n)/(k+1) < 1 < (m+n)/k,即 k < m+n < k+1。這與m、n為整數有矛盾,所以P∩Q為空集。現證明Z+=P∪Q;已知P∪Q是Z+的子集,剩下來只要證明Z+是P∪Q的子集。(反證法)假設Z+\(P∪Q)有一個元素k,則存在正整數m、n使得[ma]< k <[(m+1)a]、[nb]< k <[(n+1)b]。 由此得ma < k ≦[ (m+1)a]-1<(m+1)a -1,類似地有nb < k ≦[ (n+1)b]-1<(n+1)b -1。等價地改寫為 m/k < 1/a < (m+1)/(k+1)及n/k < 1/b < (n+1)/(k+1)。兩式加起來,得
(m+n)/k < 1 < (m+n+2)/(k+1),即m+n < k < k+1 < m+n+2。這與m, n, k皆為正整數矛盾。所以Z+=P∪Q。

 

另解:当对数为(a,a*(1+sqrt(5.0))/2.0)时,必败。。

 
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
    double small,big;
    while(cin>>small>>big)
    {
        if(small>big)
            swap(small,big);
        if(big==ceil(small*(1+sqrt(5.0))/2.0))
            cout<<0<<endl;
        else
            cout<<1<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值