Betty定理:
如果两个无理数a,b满足:
那么对于两个集合A,B:
有下面两个结论:
下面给出证明:
1.对于所有整数,最多只会在A(B)中出现一次。
由,且a,b为正可以得到a,b均大于1,所以[na]的跨度大于1,所以向下取整不会有重复。
2.对于前一个结论,用反证法证明,令整数k使得:
那么就有:
化一下得到:
同理:
两式相加:
显然,最后我们推出的结论与m,n为整数矛盾,证毕。
3.后一个结论,相当于已知,求证。
同样采取反证法,令整数k满足,由此可得,必存在整数m,n使得:
,
化简一下:
,由于a为无理数:
同理:
两式相加:
很明显,m+n和m+n+2之间只有一个整数,所以又矛盾了,即不存在这种k,证毕。