Betty定理及证明

Betty定理:

如果两个无理数a,b满足:

\frac{1}{a}+\frac{1}{b}=1

那么对于两个集合A,B:

A=\begin{Bmatrix} [na] \end{Bmatrix},B=\begin{Bmatrix}[nb] \end{Bmatrix},n\in Z

有下面两个结论:

A\cap B=\varnothing,A\cup B=N^+

下面给出证明:

1.对于所有整数,最多只会在A(B)中出现一次。

\frac{1}{a}+\frac{1}{b}=1,且a,b为正可以得到a,b均大于1,所以[na]的跨度大于1,所以向下取整不会有重复。

2.对于前一个结论,用反证法证明,令整数k使得:k\in A,k\in B

那么就有:

k<ma<k+1,k<nb<k+1

化一下得到:

\frac{k}{m}<a<\frac{k+1}{m}\Rightarrow \frac{m}{k+1}<\frac{1}{a}<\frac{m}{k}

同理:

\frac{n}{k+1}<\frac{1}{b}<\frac{n}{k}

两式相加:

\frac{m+n}{k+1}<\frac{1}{a}+\frac{1}{b}<\frac{m+n}{k}\Rightarrow \frac{m+n}{k+1}<1<\frac{m+n}{k}\Rightarrow k<m+n<k+1

显然,最后我们推出的结论与m,n为整数矛盾,证毕。

3.后一个结论,相当于已知A\cup B\sqsubseteq Z^+,求证Z^+\sqsubseteq A\cup B

同样采取反证法,令整数k满足k\in \complement_{N^+}A\cup B,由此可得,必存在整数m,n使得:

[ma]<k<[(m+1)a],[nb]<k<[(n+1)b]

化简一下:

ma<k\leq [(m+1)a]-1,由于a为无理数:

ma<k<(m+1)a-1\Rightarrow \frac{m}{k}<\frac{1}{a}<\frac{m+1}{k+1}

同理:

\frac{n}{k}<\frac{1}{b}<\frac{n+1}{k+1}

两式相加:

\frac{m+n}{k}<\frac{1}{a}+\frac{1}{b}<\frac{m+n+2}{k+1}\Rightarrow \frac{m+n}{k}<1<\frac{m+n+2}{k+1}\Rightarrow m+n<k<k+1<m+n+2

很明显,m+n和m+n+2之间只有一个整数,所以又矛盾了,即不存在这种k,证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值