参考https://tensorflow.google.cn/api_docs/python/tf/data/Dataset
from_tensor_slices:
将内存中的数据构建为数据集
dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
repeat,batch
repeat设置遍历多少遍->epoch
batch设置每次sample多少数据->batchsize
dataset.repeat(3).batch(2)
结果就是:
[1,2]
[3,1]
[2,3]
[1,2]
[3]
interleave
遍历文件,读出所有数据组成dataset
dataset.interleave(
lambda v: tf.data.Dataset.from_tensor_slices(v), # map_fn
cycle_length = 3, # cycle_length
block_length = 2, # block_length
)
map_fn:得到需要遍历的内容的函数
cycle_length:并行程度
block_length:每个遍历的结果取多少数据
n_readers = 5
dataset = filename_dataset.interleave(
lambda filename: tf.data.TextLineDataset(filename).skip(1),
# 按行读,skip省略几行,可以跳过header
cycle_length = n_readers
)
for line in dataset.take(15):
# 查看15条内容
print(line.numpy())
list_files
将文件名构成dataset
filename_dataset = tf.data.Dataset.list_files(filenames)