题目简介
动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形。A 吃 B,B 吃 C,C 吃 A。
现有 N 个动物,以 1-N 编号。每个动物都是 A,B,C 中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这 N 个动物所构成的食物链关系进行描述:
第一种说法是 1 X Y,表示 X 和 Y 是同类。
第二种说法是 2 X Y,表示 X 吃 Y。
此人对 N 个动物,用上述两种说法,一句接一句地说出 K 句话,这 K 句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话:
当前的话与前面的某些真的话冲突,就是假话;
当前的话中 X 或 Y 比 N 大,就是假话;
当前的话表示 X 吃 X,就是假话。
你的任务是根据给定的 N (1≤N≤50 000) 和 K 句话 (0≤K≤100 000),输出假话的总数。
说明
经典并查集(对我来说还是太难了)。代码中kind数组为0表示与父节点同类,1表示被父节点吃,2表示吃父节点。
初始化时,每个节点自身成为一个集合,并且父节点也是自身(0:同类)。路径压缩的时候可以顺便更新掉kind数组的状态。
Union函数(其实是Unite函数)中:
1. 如果xy不在一个集合中,关于合并之后kind要怎么变化,这个式子我纯粹靠找规律写了,可能网上有更靠谱的解法。
2. 如果xy同属一个集合,那么只需要验证这句话是不是对的就可以了。
#include <iostream>
using namespace std;
int father[50005], kind[50005];
int Find(int x)
{
if (x == father[x]) return father[x];
int y = Find(father[x]);
kind[x] = (kind[x] + kind[father[x]]) % 3;
return father[x] = y;
}
int Union(int op, int sp1, int sp2)
{
int x = Find(sp1), y = Find(sp2);
if (x == y){
if ((kind[sp1] - kind[sp2] + 3) % 3 == op - 1) return 0;
return 1;
}
father[x] = y;
kind[x] = (-kind[sp1] + op - 1 + kind[sp2] + 3) % 3;
return 0;
}
int main()
{
int n, k, op, sp1, sp2, cnt = 0, i;
cin >> n >> k;
for (i = 1; i <= n; ++i){
father[i] = i;
kind[i] = 0;
}
for (i = 0;i < k; ++i){
cin >> op >> sp1 >> sp2;
if (op == 2 && sp1 == sp2) ++cnt;
else if (sp1 > n || sp2 > n) ++cnt;
else cnt += Union(op, sp1, sp2);
}
cout << cnt << endl;
return 0;
}