预测代码
文章预测容量
方如一
这个作者很懒,什么都没留下…
展开
-
assert
Pythonassert 语句,又称断言语句,可以看做是功能缩小版的 if 语句,它用于判断某个表达式的值,如果值为真,则程序可以继续往下执行;反之,Python 解释器会报 AssertionError 错误。assert 语句的语法结构为:assert expression [, arguments]如果expression [, arguments]为True,程序继续执行,否则,程序报...原创 2022-05-25 09:08:13 · 204 阅读 · 0 评论 -
BatchNormalization
keras.layers.BatchNormalization(axis=-1)批量标准化层 。在每一个批次的数据中标准化前一层的激活项, 即,应用一个维持激活项平均值接近 0,标准差接近 1 的转换。参数axis: 整数,需要标准化的轴 (通常是特征轴)。 例如,在data_format="channels_first"的Conv2D层之后, 在BatchNormalization中设置axis=1。输入尺寸可以是任意的。输出尺寸与输入相同。...原创 2022-05-24 21:45:15 · 700 阅读 · 0 评论 -
Layers>Lambda层
Lambda层可以对输入数据进行任意数学表达式function计算,并将计算结果输出输入尺寸任意。在使用 TensorFlow 时,推理可以得到输出尺寸。keras.layers.Lambda(function)# function:需要封装的函数 #Output.shape = (batch_size,input_dim, window_width) a = Lambda(lambda x: K.mean(x, axis=1))(a) #Output.shape =原创 2022-05-20 21:54:43 · 444 阅读 · 0 评论 -
Layers>Reshape层
Reshape层用来将输入shape转换为特定的shape参数target_shape:目标shape,为整数的tuple,不包含样本数目的维度(batch_size)输入shape任意,但输入的shape必须固定。当使用该层为模型首层时,需要指定input_shape参数输出shape(batch_size,)+target_shape例子# as first layer in a Sequential modelmodel = Sequential()model.ad原创 2022-05-20 18:06:26 · 448 阅读 · 0 评论 -
Layers>Permute层
Permute(dims)置换输入的维度。dims: 整数元组。索引从 1 开始。 例如, (2, 1) 置换输入的第一和第二个维度。a = Permute((2, 1))(inputs)# 若input_shape=(10, 64),则现在output_shape == (None, 64, 10)# 注意: `None` 是批表示的维度经过Permute输出尺寸与输入尺寸相同,但是维度根据dims重新排列......原创 2022-05-19 22:09:07 · 370 阅读 · 0 评论 -
append()函数:增加list内容
append()函数作用:在列表list的末尾增加一个新元素,仅修改列表list,无返回对象append()函数常用情况:增加列表list内容append()函数语法:list.append(新增的元素)Y=[1,2]Y.append(4)Y.append(7)print(Y)# 输出:[1, 2, 4, 7]但是,当尝试如下代码时,会提示说 append() 函数只接受一个参数,但给了 3 个。因此,可知 append() 函数一次仅能增加一个元素。X=[1,2]X.a原创 2022-02-27 19:25:55 · 1945 阅读 · 0 评论 -
range()函数:生成数据范围,左到右不到
目录rang()函数作用:生成全是整数的一个数据范围。rang()函数语法:range(start, stop, step)rang()函数常用情况:在for循环中使用rang()函数作用:生成全是整数的一个数据范围。rang()函数语法:range(start, stop, step)start 为起始值,默认是 0;stop 为结束值;step 是步长,默认为 1。注意,range() 函数生成的整数等差数列左到右不到,即satrt可以取到stop不能取到。r...原创 2022-02-26 21:25:49 · 3577 阅读 · 0 评论 -
数据结构5 :DataFrame(Pandas库)
series是一个一维的列数据,其中每一个元素都有一个标签。import pandas as pd s = pd.Series([2, 4, 6, 8]) print(s) 结果为,2468为一组列数据,左边的0123是数据的对应标签。原创 2022-03-14 22:07:04 · 48824 阅读 · 0 评论 -
read_csv
问题:如何读取csv文件方法:从pandas库中读取,pandas.read_csv(‘文件路径’)或者pandas.read_csv(‘文件名’)1.pandas.read_csv(‘文件路径’)文件可以放在某个特定的文件夹里,比如说我放在D盘data文件夹下:#代码import pandasdf = pandas.read_csv('D:/data/a.csv')print(df)#结果 姓名 班级 分数0 小明 302 871 小王 303原创 2022-02-24 16:20:33 · 5588 阅读 · 0 评论 -
MinMaxScaler(feature_range=(0,1))(sklearn库)
MinMaxScaler()函数在sklearn库中。sklearn 库有六大模块,分别是分类、回归、聚类、降维、模型选择和预处理。MinMaxScaler属于预处理preprocessing模块,用来实现数据的归一化,即把数据映射到 [ 0,1 ] 。什么是数据的归一化公式:,是指映射值的最小值和最大值,一般是min=0,max=1;,是指每列中元素的最小值和最大值,因为axis=0所以跨行处理即对每一列做这样的归一化操作,这也比较符合实际应用;代码import numpy a.原创 2022-02-26 15:56:57 · 8933 阅读 · 1 评论 -
batchsize :一次训练所选取的样本数
Batch Size 参数作用:翻译为批尺寸,即一次训练网络所选取的样本数Batch Size 参数意义:Batch Size =none 训练网络时一次把所有的数据输入网络中,只适用于小样本数据库 Batch Size =1 每次训练一个样本,即在线学习(Online Learning),结果不准确网络难收敛。 Batch Size =? 一般用批梯度下降法(Mini-batches Learning)选择适合的Batch Size ...原创 2022-03-04 19:57:01 · 3195 阅读 · 1 评论