人工智能感知技术演变:从单模态到多模态智能体的全面跃迁
引言
人工智能(感知技术)的演变史,本质上是人类尝试赋予机器以“感官”并模拟认知的过程。从早期的规则驱动到深度学习驱动的多模态融合,再到具身智能的物理交互,这一历程不仅重构了技术的边界,更深刻影响了人类对智能本质的理解。本文将从技术演进、核心突破、应用场景、伦理挑战及未来趋势五个维度,系统梳理人工智能感知技术的演变路径,并结合2025年的最新进展,展望其未来发展方向。
一、技术演进:从单模态到多模态的跨越
1. 单模态感知的奠基(1950s-2010s)
-
视觉感知:早期基于模板匹配的OCR技术(如1960年代邮政分拣系统)仅能处理固定字体;2001年Viola-Jones算法通过Haar特征和级联分类器实现实时人脸检测,标志着计算机视觉从静态分析迈向动态捕捉1。