- 博客(6)
- 收藏
- 关注
原创 梯度分类激活法检测物体
对于没有标定边框的图片数据集,无法用SSD或Fast RCNN等方法进行目标检测,可以用分类激活图(class activation maps,CAM)方法检测和识别物体。这方面的论文有《Learning Deep Features for Discriminative Localization》,《Visual Explanations from Deep Networks vi...
2018-09-05 18:29:58 534 1
原创 Word2Vec词向量模型代码
Word2Vec也称Word Embedding,中文的叫法是“词向量”或“词嵌入”,是一种计算非常高效的,可以从原始语料中学习字词空间向量的预测模型。Word2Vec可以把一个维数为所有词的数量的高维空间嵌入到一个低维的连续向量空间中,每个单词或词组被映射为实数域上的向量。通过词嵌入这种方式将单词转变为词向量,机器便可对单词进行计算,得到单词之间的相似性。以诗词《全宋词》为训练数据...
2018-08-31 15:01:27 4676
原创 LSTM(Long short term memory)网络结构和语言模型代码
长短时记忆网络(Long short term memory,LSTM)是一种循环神经网络(Recurrent neural network,RNN)。与卷积神经网络不同的是,循环神经网络会对每一个时刻的输入结合当前模型的状态给出一个输出。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。LSTM具有非常广泛的应用,包括语音识别、文本分类、语言模型、自...
2018-08-31 14:24:43 1727
原创 Inception V4网络结构和代码解析
学习了Inception V4卷积神经网络,总结一下对Inception V4网络结构和主要代码的理解。 GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception 的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。本文介绍I...
2018-08-14 14:41:19 4171 1
原创 Inception V3网络结构和代码解析
学习了Inception V3卷积神经网络,总结一下对Inception V3网络结构和主要代码的理解。 GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception 的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。本文介...
2018-08-12 17:15:56 5075 2
原创 ResNet网络结构和主要代码解析
学习了ResNet卷积神经网络,总结一下对ResNet网络结构和主要代码的理解。 ResNet(Residual Neural Network)通过使用残差学习单元(Residual Unit),训练了152层深的神经网络,在ILSVRC 2015比赛中取得3.57%的top-5错误率。ResNet与其他卷积神经网络的不同之处在于采用残差结抅,原始输入信息可以直接传输...
2018-08-10 14:52:10 8566 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人