算法:用数组求两个字符串最长的公共子串

using System;
using System.Collections;

namespace 数据结构_数组
{
    class Program
    {
        public static Int32 MaxLen;
        public static Int32 Jpos;
        public static Int32 k = 0;
        public static int[] LengthArray = new Int32[100];//存储没一斜行最多的连续1的个数
        public static int[] PosArray = new Int32[100];//存储没一行最多的连续1的开始位置
        public static Hashtable ht = new Hashtable();
        //假设s1="gabadfgtab",s2="sgabacbadfgtbacst",则公共字符串为"badfgt"
        static void Main(string[] args)
        {
            string s1 = "gabadfgtab";
            string s2 = "sgabacbadfgtbacst";
            string s3 = Getmaxsamestr(s1, s2);
            Console.WriteLine(s3);
            Console.ReadLine();
        }
        /**********************************************************
          * Getmaxsamestr函数主要设计矩阵
          * *******************************************************/
        public static string Getmaxsamestr(string s1, string s2)//不妨设s1.Length<=s2.Length
        {
            int[,] mat = new Int32[s1.Length, s2.Length];
            for (int i = 0; i < s1.Length; i++)
                for (int j = 0; j < s2.Length; j++)
                {
                    if (s1[i] == s2[j])
                        mat[i, j] = 1;          //根据字符串的匹配填写矩阵
                    else mat[i, j] = 0;
                }
            diagmax(mat, s1.Length, s2.Length, MaxLen, Jpos);
            ArrayProcess(LengthArray, PosArray, s1.Length + s2.Length - 1);
            return s2.Substring(Jpos, MaxLen);
        }
        /**********************************************************
         * diagscan函数主要是计算斜行的连续1的最大个数,及开始位置
         * *******************************************************/
        public static void diagscan(int[,] mat, int m, int n, int i, int j, int mLen, int Jpos)
        {
            int eq = 0, len = 0, sj = 0;//eq主要用来判断是不是第一个为“1”的元素
            while (i < m && j < n)
            {
                if (mat[i, j] == 1)
                {
                    len++;
                    if (eq == 0)       //扫描每一个对角线上最长的连续1的个数
                    {
                        eq = 1;
                        sj = j;
                    }
                }
                else if (eq == 1)
                //eq主要用来判断1是第一个1还是连续的1
                //比如”111101“当遇到第一个1时eq置1,遇到第二个1时直接在len上
                //加1即可,如果遇到0将最大值赋值给MaxLen,并把标注为ben设为0
                {
                    if (len > MaxLen)
                    {
                        MaxLen = len;
                        Jpos = sj;
                    }
                    eq = 0; len = 0;
                }

                i++;
                j++;
            }
            if (len > MaxLen)
            {
                MaxLen = len;
                Jpos = sj;
            }
            LengthArray[k] = MaxLen;
            PosArray[k] = Jpos;//将最大值及位置放入数组中,以便比较那个斜行的值最大
            k++;
            MaxLen = 0;
            Jpos = 0;
        }
        /*************************************************
         * diagmax 循环扫描每一斜行
         * **********************************************/
        public static void diagmax(int[,] mat, int m, int n, int MaxLen, int Jpos)
        {
            int i, j;
            int istart = 0;
            for (int k = 1 - n; k <= m - 1; k++)
            {
                i = istart; j = i - k;
                diagscan(mat, m, n, i, j, MaxLen, Jpos);
                istart += (k >= 0) ? 1 : 0;
                //ht.Add(MaxLen, Jpos);
            }
        }
        public static void ArrayProcess(int[] a, int[] b, int n)//n为数组长度,a为长度数组
        {
            MaxLen = a[0]; Jpos = 0;
            for (int i = 0; i < n; i++)
            {
                if (MaxLen < a[i])
                {
                    MaxLen = a[i];
                    Jpos = b[i];
                }
            }
        }
    }
}
花了很长时间才调通。。。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值