东华复试100 邮票

100 邮票

作者: Turbo时间限制: 1S章节: 动态规划

问题描述 :

已知一个 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K ,表示信封上能够贴 K 张邮票。计算从 1 到 M 的最大连续可贴出的邮资。 例如,假设有 1 分和 3 分的邮票;你最多可以贴 5 张邮票。很容易贴出 1 到 5 分的邮资(用 1 分邮票贴就行了),接下来的邮资也不难:

6 = 3 + 3

7 = 3 + 3 + 1

8 = 3 + 3 + 1 + 1

9 = 3 + 3 + 3

10 = 3 + 3 + 3 + 1

11 = 3 + 3 + 3 + 1 + 1

12 = 3 + 3 + 3 + 3

13 = 3 + 3 + 3 + 3 + 1。

然而,使用 5 枚 1 分或者 3 分的邮票根本不可能贴出 14 分的邮资。因此,对于这两种邮票的集合和上限 K=5,答案是 M=13。

输入说明 :

第 1 行: 两个整数,K 和 N。

K(1 <= K <= 200)是可用的邮票总数。N(1 <= N <= 50)是邮票面值的数量。

第 2 行 到最后: N 个整数,每行 最多15 个,列出所有的 N 个邮票的面值,面值不超过 10000。

输出说明 :

第 1 行: 一个整数,从 1 分开始连续的可用集合中不多于 K 张邮票贴出的邮资数。

输入范例 :

5 2
1 3
输出范例 :

13

第二次写这个题目发现有点遗忘,在此整理下

/**
邮票问题
动态规划
 

*/
#include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std;
int K;
int dp[2000001];
int DP(int number[],int n){
	
	dp[0]=0;//初始条件 
	int i;
	int j=0;
	while(dp[j]<=K){
		j++;
		dp[j]=99999;//定义比较大的 
		for(i=1;i<=n;i++)
		{
			if(j>=number[i])
			dp[j]=min(dp[j],dp[j-number[i]]+1);//转移方程 
		}
			
	}
	return j-1;
}

int main(){
	
	
	int N;
	scanf("%d%d",&K,&N); 
	
	int i;
	int number[100];
	for(i=1;i<=N;i++)
		scanf("%d",&number[i]);
	int max=DP(number,N);
	printf("%d\n",max);
	return 0;
	
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值