100 邮票
作者: Turbo时间限制: 1S章节: 动态规划
问题描述 :
已知一个 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K ,表示信封上能够贴 K 张邮票。计算从 1 到 M 的最大连续可贴出的邮资。 例如,假设有 1 分和 3 分的邮票;你最多可以贴 5 张邮票。很容易贴出 1 到 5 分的邮资(用 1 分邮票贴就行了),接下来的邮资也不难:
6 = 3 + 3
7 = 3 + 3 + 1
8 = 3 + 3 + 1 + 1
9 = 3 + 3 + 3
10 = 3 + 3 + 3 + 1
11 = 3 + 3 + 3 + 1 + 1
12 = 3 + 3 + 3 + 3
13 = 3 + 3 + 3 + 3 + 1。
然而,使用 5 枚 1 分或者 3 分的邮票根本不可能贴出 14 分的邮资。因此,对于这两种邮票的集合和上限 K=5,答案是 M=13。
输入说明 :
第 1 行: 两个整数,K 和 N。
K(1 <= K <= 200)是可用的邮票总数。N(1 <= N <= 50)是邮票面值的数量。
第 2 行 到最后: N 个整数,每行 最多15 个,列出所有的 N 个邮票的面值,面值不超过 10000。
输出说明 :
第 1 行: 一个整数,从 1 分开始连续的可用集合中不多于 K 张邮票贴出的邮资数。
输入范例 :
5 2
1 3
输出范例 :
13
第二次写这个题目发现有点遗忘,在此整理下
/**
邮票问题
动态规划
*/
#include <cstdio>
#include <algorithm>
#include <iostream>
using namespace std;
int K;
int dp[2000001];
int DP(int number[],int n){
dp[0]=0;//初始条件
int i;
int j=0;
while(dp[j]<=K){
j++;
dp[j]=99999;//定义比较大的
for(i=1;i<=n;i++)
{
if(j>=number[i])
dp[j]=min(dp[j],dp[j-number[i]]+1);//转移方程
}
}
return j-1;
}
int main(){
int N;
scanf("%d%d",&K,&N);
int i;
int number[100];
for(i=1;i<=N;i++)
scanf("%d",&number[i]);
int max=DP(number,N);
printf("%d\n",max);
return 0;
}