背包问题

学习总结 专栏收录该内容
10 篇文章 0 订阅

实验题目:背包问题

问题描述:假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2, … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。

例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解:

(1,4,3,2)

              (1,4,5)

              (8,2)

              (3,5,2)。

概要设计:

采用栈数据结构,利用回溯法的设计思想来解决背包问题。

首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品“太大”不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明“刚刚”装入背包的那件物品“不合适”,应将它取出“弃之一边”,继续再从“它之后”的物品中选取,如此重复,直至求得满足条件的解,或者无解。

 

ADT Stack {

    数据对象:D={ ai | ai ∈ElemSet, i=1,2,...,n, 

     n≥0 }

    数据关系:R1={ <ai-1, ai >| ai-1, ai∈D, i=2,...,n }

                   约定an 端为栈顶,a1 端为栈底。

    基本操作:

        InitStack(&S)

    操作结果:构造一个空栈S。

        DestroyStack(&S)

    初始条件:栈S已存在。

    操作结果:栈S被销毁。

ClearStack(&S)

    初始条件:栈S已存在。

    操作结果:将S清为空栈。

        StackEmpty(S)

    初始条件:栈S已存在。

    操作结果:若栈S为空栈,则返回TRUE,否则FALSE。

        StackLength(S)

    初始条件:栈S已存在。

操作结果:返回S的元素个数,即栈的长度。

GetTop(S, &e)

初始条件:栈S已存在且非空。

操作结果:用e返回S的栈顶元素。

     Push(&S, e)

初始条件:栈S已存在。

操作结果:插入元素e为新的栈顶元素。

     Pop(&S, &e)

初始条件:栈S已存在且非空。

操作结果:删除S的栈顶元素,并用e返回其值。

  } ADT Stack

 

源代码则省略了,书本里面有。

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
问题描述: 假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解: (1,4,3,2) (1,4,5) (8,2) (3,5,2)。 问题提示: 可利用回溯法的设计思想来解决背包问题。首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。 题目之二: 问题描述: 假设有n件物品,这些物品的重量分别是W1 , W2 , … , Wn,物品的价值分别是V1,V2, …,Vn。求从这n件物品中选取一部分物品的方案,使得所选中的物品的总重量不超过限定的重量W(W<∑Wi, i=1,2,┅,n),但所选中的物品价值之和为最大。 问题提示: 利用递归寻找物品的选择方案。假设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[]中,该方案的总价值保存于变量max_value中。当前正在考察新方案,其物品选择情况保存于数组eop[]中。假设当前方案已考虑了i-1件物品,现在要考虑第i件物品:当前方案已包含的物品的重量之和为tw;因此,若其余物品都选择是可能的话,本方案所能达到的总价值的期望值设为tv。引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值max_value时,继续考察当前方案已无意义,应终止当前方案而去考察下一个方案。 第i件物品的选择有两种可能: ① 物品i被选择。这种可能性仅当包含它不会超过方案总重量的限制才是可行的。选中之后继续递归去考虑其余物品的选择; ② 物品i不被选择。这种可能性仅当不包含物品i也有可能找到价值更大的方案的情况。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值