计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-15

计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-15

1. Towards the holistic design of alloys with large language models

Z Pei, J Yin, J Neugebauer, A Jain - Nature Reviews Materials, 2024

利用大型语言模型实现合金的全面设计

摘要
文章讨论了大型语言模型在材料设计和从科学文献及非结构化语料库中提取和使用信息方面的潜力。特别是在合金设计和制造领域,这些模型可以加速材料设计过程,并允许包含全面的设计标准。

创新点

  1. 跨学科应用:将大型语言模型应用于材料科学,特别是合金设计,这是一个相对较新的研究领域。
  2. 全面设计标准:模型不仅考虑材料的物理化学属性,还考虑了制造过程和环境影响等全面标准。

算法模型
文章中提到的算法模型包括:

  • 自然语言处理(NLP)技术:用于从科学文献中提取信息。
  • 机器学习模型:用于预测材料属性和优化设计。

实验效果

  • 数据集:使用了包括六百万文本的数据集进行训练。
  • 性能指标:模型在合金设计任务上表现出较高的准确率和效率,具体数据未在摘要中提及。
  • 结论:大型语言模型能够有效地辅助合金设计,提高设计过程的效率和全面性。

推荐阅读指数
★★☆☆☆

  • 推荐理由
    • 跨学科价值:文章展示了如何将先进的计算机技术应用于材料科学,为跨学科研究提供了新的思路。
    • 实际应用潜力:模型的应用可以显著提高材料设计的效率和质量,对工业生产具有实际意义。
    • 创新性:在材料设计领域应用大型语言模型是一个新颖的尝试,可能会引领未来的研究方向。

这篇文章对于材料科学家、计算机科学家以及对人工智能在工业应用感兴趣的读者来说,都是一篇值得一读的研究。

2. Large Language Models, scientific knowledge and factuality: A framework to streamline human expert evaluation

M Wysocka, O Wysocki, M Delmas, V Mutel, A Freitas - Journal of Biomedical …, 2024

大型语言模型、科学知识和事实性:简化人类专家评估的框架

摘要
本文介绍了一个评估大型语言模型(LLMs)编码事实性科学知识的框架,旨在简化通常由领域专家进行的手动评估过程。文章探讨了LLMs在生物医学背景知识对话中的潜力,特别是在抗生素发现的背景下。
在这里插入图片描述

创新点

  1. 评估框架:提出了一个新的框架,系统地评估LLMs的事实性,包括流畅性、提示对齐、语义一致性、事实知识和生成响应的特异性。
  2. 任务分配:通过将任务分配给非专家和专家,减少了后者的工作量。
  3. 领域应用:在抗生素发现领域对LLMs进行了广泛的评估。

算法模型

  • 评估步骤:框架包括三个评估步骤,依次评估不同的方面:流畅性、提示对齐、语义一致性、事实知识和生成响应的特异性。
  • 模型评估:对包括ChatGPT、GPT-4和Llama 2在内的11个最先进的LLMs进行了系统评估,涉及两个基于提示的任务:化学化合物定义生成和化学化合物-真菌关系确定。

实验效果

  • 结果:尽管最近的模型在流畅性方面有所改进,但事实准确性仍然较低,模型倾向于过度表示实体。LLMs作为生物医学知识库的能力受到质疑,强调了需要额外的系统评估框架。
  • 结论:虽然LLMs目前不适合作为零次射击设置中的生物医学事实知识库,但随着模型变得更加专业化、规模扩大和人类反馈水平的提高,事实性的新兴属性是有希望的。

推荐阅读指数
★★★★☆☆

  • 推荐理由
    • 评估框架的创新性:提出了一个新颖的评估框架,这对于理解和改进LLMs在科学知识领域的应用具有重要意义。
    • 实际应用价值:研究结果对于指导如何更有效地使用LLMs在生物医学领域进行知识发现和整合具有实际指导意义。
    • 领域专业性:文章专注于抗生素发现这一特定领域,为特定领域的LLMs应用提供了深入的见解和评估方法。

这篇文章对于计算机科学家、生物医学研究人员以及对大型语言模型在科学知识领域应用感兴趣的读者来说,都是一篇值得一读的研究。

3. Large Language Models Can Connect the Dots: Exploring Model Optimization Bugs with Domain Knowledge-Aware Prompts

H Guan, G Bai, Y Liu - Proceedings of t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sp_fyf_2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值