计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-10
1. Characterizing and Efficiently Accelerating Multimodal Generation Model Inference
Y Lee, A Sun, B Hosmer, B Acun, C Balioglu, C Wang… - arXiv preprint arXiv …, 2024
https://arxiv.org/pdf/2410.00215?
特征化与高效加速多模态生成模型推理
摘要
本文针对多模态生成模型在实际系统上的推理性能进行了深入分析,识别了系统设计和优化的关键机会。多模态生成模型在理解并响应多种模态方面具有革命性的能力,但这些高级功能通常需要显著的系统资源。为了在全球范围内将生成性AI能力扩展到数十亿用户,推理过程必须快速且高效。文章通过特征化一系列新兴的多模态生成模型,指出了关键的系统设计和优化机会,并展示了从应用到系统软件和硬件的最新优化方法,可将推理性能提高3.88倍。
创新点
- 系统性能特征化:对多模态生成模型进行了深入的系统性能分析,包括计算需求、内存带宽需求和输入分布的变化。
- 优化方法:展示了包括torch.compile、CUDA Graph、Scaled Dot Product Attention (SDPA) / Flash Attention和量化技术在内的最新优化方法,这些方法可以显著提高推理性能。
- 算法优化:通过LayerSkip等算法优化进一步提高推理性能效率。
算法模型
- 多模态生成模型:涵盖了语言模型(如Code Llama)、语音翻译(如Seamless)、文本和图像生成(如Chameleon)以及生成式深度学习推荐系统(如gDLRM)。
- 优化技术:
- SDPA/Flash Attention:用于加速Transformer模型中的关键性能瓶颈。
- torch.compile和CUDA Graph:用于优化内存效率和提高GPU利用率。
- 量化:提高计算密度和内存带宽利用率。
- LayerSkip:一种自推测解码方法,用于加速生成过程。
实验效果
- 性能提升:通过启用最新的优化技术,跨关键生成AI任务的推理性能平均提高了3.88倍。
- 数据与结论:
- 不同模型的性能差异:例如,Chameleon的文本到图像任务比HSTU需要更多的计算资源。
- 优化技术的影响:SDPA和torch.compile结合使用可以显著提高性能,尤其是在小批量设置中。
- 实时应用潜力:对于Seamless模型,优化后的端到端推理速度提高了2.7倍,这对于实时语音翻译任务至关重要。