计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-10

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-10

1. Characterizing and Efficiently Accelerating Multimodal Generation Model Inference

Y Lee, A Sun, B Hosmer, B Acun, C Balioglu, C Wang… - arXiv preprint arXiv …, 2024
https://arxiv.org/pdf/2410.00215?

在这里插入图片描述
在这里插入图片描述
特征化与高效加速多模态生成模型推理

摘要

本文针对多模态生成模型在实际系统上的推理性能进行了深入分析,识别了系统设计和优化的关键机会。多模态生成模型在理解并响应多种模态方面具有革命性的能力,但这些高级功能通常需要显著的系统资源。为了在全球范围内将生成性AI能力扩展到数十亿用户,推理过程必须快速且高效。文章通过特征化一系列新兴的多模态生成模型,指出了关键的系统设计和优化机会,并展示了从应用到系统软件和硬件的最新优化方法,可将推理性能提高3.88倍。

创新点

  1. 系统性能特征化:对多模态生成模型进行了深入的系统性能分析,包括计算需求、内存带宽需求和输入分布的变化。
  2. 优化方法:展示了包括torch.compile、CUDA Graph、Scaled Dot Product Attention (SDPA) / Flash Attention和量化技术在内的最新优化方法,这些方法可以显著提高推理性能。
  3. 算法优化:通过LayerSkip等算法优化进一步提高推理性能效率。

算法模型

  • 多模态生成模型:涵盖了语言模型(如Code Llama)、语音翻译(如Seamless)、文本和图像生成(如Chameleon)以及生成式深度学习推荐系统(如gDLRM)。
  • 优化技术
    • SDPA/Flash Attention:用于加速Transformer模型中的关键性能瓶颈。
    • torch.compile和CUDA Graph:用于优化内存效率和提高GPU利用率。
    • 量化:提高计算密度和内存带宽利用率。
    • LayerSkip:一种自推测解码方法,用于加速生成过程。

实验效果

  • 性能提升:通过启用最新的优化技术,跨关键生成AI任务的推理性能平均提高了3.88倍。
  • 数据与结论
    • 不同模型的性能差异:例如,Chameleon的文本到图像任务比HSTU需要更多的计算资源。
    • 优化技术的影响:SDPA和torch.compile结合使用可以显著提高性能,尤其是在小批量设置中。
    • 实时应用潜力:对于Seamless模型,优化后的端到端推理速度提高了2.7倍,这对于实时语音翻译任务至关重要。
    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sp_fyf_2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值