线程池的优势
- 降低系统资源消耗,通过重用已存在的线程,降低线程创建和销毁造成的消耗;
- 提高系统响应速度,当有任务到达时,通过复用已存在的线程,无需等待新线程的创建便能立即执行;
- 方便线程并发数的管控。因为线程若是无限制的创建,可能会导致内存占用过多而产生OOM,并且会造成cpu过度切换(cpu切换线程是有时间成本的(需要保持当前执行线程的现场,并恢复要执行线程的现场))。
- 提供更强大的功能,延时定时线程池。
java中提供的线程池
Executors类提供了4种不同的线程池:newCachedThreadPool, newFixedThreadPool, newScheduledThreadPool, newSingleThreadExecutor
newCachedThreadPool:用来创建一个可以无限扩大的线程池,适用于负载较轻的场景,执行短期异步任务。(可以使得任务快速得到执行,因为任务时间执行短,可以很快结束,也不会造成cpu过度切换)
newFixedThreadPool:创建一个固定大小的线程池,因为采用无界的阻塞队列,所以实际线程数量永远不会变化,适用于负载较重的场景,对当前线程数量进行限制。(保证线程数可控,不会造成线程过多,导致系统负载更为严重)
newSingleThreadExecutor:创建一个单线程的线程池,适用于需要保证顺序执行各个任务。
newScheduledThreadPool:适用于执行延时或者周期性任务。
代码示例:
public class ExecutorsTest {
public static void main(String[] args) {
// 创建固定数据的线程的线程池,线程池数量为5
// ExecutorService executorService = Executors.newFixedThreadPool(5);
// 创建一个无线扩大的线程池
// ExecutorService executorService = Executors.newCachedThreadPool();
// 创建一个单线程的线程池,适用于需要保证顺序执行各个任务
ExecutorService executorService = Executors.newSingleThreadExecutor();
try {
// 加入10个任务
for (int i = 0; i < 10; i++) {
final int tempInt = i;
executorService.execute(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "->" + tempInt);
}
});
}
} finally {
executorService.shutdown();
}
}
}
java提供的这个4个线程池。底层实际上都是调用的ThreadPoolExecutor类的构造方法:
public static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
但是更阿里巴巴的开发手册,工作中一般不用Executors提供线程池:
execute()和submit()方法
- execute(),执行一个任务,没有返回值。
- submit(),提交一个线程任务,有返回值。
- submit(Callable task)能获取到它的返回值,通过future.get()获取(阻塞直到任务执行完)。一般使用FutureTask+Callable配合使用(IntentService中有体现)。
- submit(Runnable task, T result)能通过传入的载体result间接获得线程的返回值。
submit(Runnable task)则是没有返回值的,就算获取它的返回值也是null。 - Future.get方法会使取结果的线程进入阻塞状态,知道线程执行完成之后,唤醒取结果的线程,然后返回结果。
。
线程池的七大参数
有的只说5个参数或者6个,但是实际上ThreadPoolExecutor
是有7个参数的,如下源码 :
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
Executors.defaultThreadFactory(), defaultHandler);
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
构造器ThreadPoolExecutor,里面调用了带有7个参数的构造器this
下面来看看每一个参数的具体意思:
corePoolSize
:线程池中常驻的核心线程数
当向线程池提交一个任务时,若线程池已创建的线程数小于corePoolSize,即便此时存在空闲线程,也会通过创建一个新线程来执行该任务,直到已创建的线程数大于或等于corePoolSize时
maximumPoolSize
:线程池能够容纳同时执行的最大线程数,此值必须大于等于1
线程池所允许的最大线程个数。当队列满了,且已创建的线程数小于maximumPoolSize,则线程池会创建新的线程来执行任务。另外,对于无界队列,可忽略该参数
keepAliveTime
:多余的空闲线程的存活时间。
当线程池中线程数大于核心线程数时,线程的空闲时间如果超过线程存活时间,那么这个线程就会被销毁,直到线程池中的线程数小于等于核心线程数
TimeUnit
:keepAliveTime时间单位
workQueue
:任务队列,被提交单尚未被执行的任务。
threadFactory
:表示生产线程池中工作线程的线程工厂,用于创建线程一般用默认即可。
用于创建新线程。threadFactory创建的线程也是采用new Thread()方式,threadFactory创建的线程名都具有统一的风格:pool-m-thread-n(m为线程池的编号,n为线程池内的线程编号)
handler
:拒绝策略,表示当队列满了,并且工作线程大于等于最大的线程数,就启用拒绝策略
线程池的执行流程
-
判断核心线程池是否已满,没满则创建一个新的工作线程来执行任务。已满则放入任务队列。
-
判断任务队列是否已满,没满则将新提交的任务添加在工作队列,已满则继续3
-
判断整个线程池是否已满,没满则创建一个新的工作线程来执行任务,已满则执行饱和策略。
1、判断线程池中当前线程数是否大于核心线程数,如果小于,在创建一个新的线程来执行任务,如果大于则
2、判断任务队列是否已满,没满则将新提交的任务添加在工作队列,已满则。
3、判断线程池中当前线程数是否大于最大线程数,如果小于,则创建一个新的线程来执行任务,如果大于,则执行饱和策略。)
线程池为什么要使用阻塞队列而不使用非阻塞队列?
-
阻塞队列可以保证任务队列中没有任务时阻塞获取任务的线程,使得线程进入wait状态,释放cpu资源。
-
当队列中有任务时才唤醒对应线程从队列中取出消息进行执行。
使得在线程不至于一直占用cpu资源。(线程执行完任务后通过循环再次从任务队列中取出任务进行执行,代码片段如下
while (task != null || (task = getTask()) != null) {})。
线程池的4种拒绝策略及其线程池自己实现
- AbortPolicy(默认):直接抛出RejectedExecutionException异常阻止系统正常运行
- CallerRunPolicy:"调用者运行"一种调节机制,该策略既不会抛弃任务,也不会抛出异常,而是将某些任务回退给调用者,
- DiscardOldestPolicy:抛弃队列中等待最久的任务,然后把当前任务加入到队列中尝试再次提交。
- DiscardPolicy:直接丢弃任务,不予任何处理,也不抛出异常,如果允许任务丢失,这是一种最好的方案
代码示例:
拒绝策略是:AbortPolicy
public class MyThreadPool {
/**
* 该线程池的核心线程数2,最大线程数为5,任务队列容量为3,拒绝策略是:AbortPolicy
* @return
*/
public static ExecutorService getThreadPool() {
return new ThreadPoolExecutor(
2,
5,
1L,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
}
public static void main(String[] args) {
ExecutorService threadPool = MyThreadPool.getThreadPool();
try {
// 加入10个任务
for (int i = 0; i < 10; i++) {
final int tempInt = i;
threadPool.execute(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "->" + tempInt);
}
});
}
} finally {
threadPool.shutdown();
}
}
}
如上代码:线程池的核心线程数2,最大线程数为5,任务队列容量为3,拒绝策略是:AbortPolicy。
当提交10 个任务时,运行结果:
pool-1-thread-4->6
Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task com.fangyajun.javasduty.juc.executors.MyThreadPool$1@135fbaa4 rejected from java.util.concurrent.ThreadPoolExecutor@45ee12a7[Running, pool size = 5, active threads = 3, queued tasks = 0, completed tasks = 5]
pool-1-thread-2->2
at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)
pool-1-thread-2->4
pool-1-thread-3->5
at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)
pool-1-thread-1->0
pool-1-thread-4->3
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)
pool-1-thread-5->7
at com.fangyajun.javasduty.juc.executors.MyThreadPool.main(MyThreadPool.java:28)
出抛出异常,终止程序执行。
拒绝策略是:CallerRunPolicy
/**
* 该线程池的核心线程数2,最大线程数为5,任务队列容量为3,拒绝策略是:CallerRunsPolicy
* @return
*/
public static ExecutorService getThreadPool() {
return new ThreadPoolExecutor(
2,
5,
1L,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.CallerRunsPolicy());
}
public static void main(String[] args) {
//
ExecutorService threadPool = MyThreadPool.getThreadPool();
try {
// 加入10个任务
for (int i = 0; i < 10; i++) {
final int tempInt = i;
threadPool.execute(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "->" + tempInt);
}
});
}
} finally {
threadPool.shutdown();
}
}
}
运行结果:
pool-1-thread-1->0
pool-1-thread-5->7
pool-1-thread-4->6
pool-1-thread-4->4
pool-1-thread-3->5
pool-1-thread-2->1
main->8
pool-1-thread-5->3
pool-1-thread-1->2
pool-1-thread-4->9
从结果可以看出CallerRunPolicy策略既不会抛弃任务,也不会抛出异常,而是将某些任务回退给main线程执行。
拒绝策略:DiscardOldestPolicy
public class MyThreadPool {
/**
* 该线程池的核心线程数2,最大线程数为5,任务队列容量为3,拒绝策略是:CallerRunsPolicy
* @return
*/
public static ExecutorService getThreadPool() {
return new ThreadPoolExecutor(
2,
5,
1L,
TimeUnit.SECONDS,
new LinkedBlockingQueue<>(3),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.DiscardOldestPolicy());
}
public static void main(String[] args) {
//
ExecutorService threadPool = MyThreadPool.getThreadPool();
try {
// 加入10个任务
for (int i = 0; i < 10; i++) {
final int tempInt = i;
threadPool.execute(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + "->" + tempInt);
}
});
}
} finally {
threadPool.shutdown();
}
}
}
运行结果:
pool-1-thread-1->0
pool-1-thread-2->1
pool-1-thread-3->5
pool-1-thread-3->9
pool-1-thread-2->8
pool-1-thread-5->7
pool-1-thread-1->4
pool-1-thread-4->6
从结果可以看出,一共10个任务,结果就执行了8个,2个任务被丢弃了。
DiscardPolicy拒绝策略是当无法处理就直接丢弃任务,在此不代码举例了。
使用场景:
四种拒绝策略是相互独立无关的,选择何种策略去执行,还得结合具体的业务场景
如何配置线程池
CPU密集型任务
尽量使用较小的线程池,一般为CPU核心数+1。 因为CPU密集型任务使得CPU使用率很高,若开过多的线程数,会造成CPU过度切换。
IO密集型任务
可以使用稍大的线程池,一般为2*CPU核心数。 IO密集型任务CPU使用率并不高,因此可以让CPU在等待IO的时候有其他线程去处理别的任务,充分利用CPU时间。
混合型任务
可以将任务分成IO密集型和CPU密集型任务,然后分别用不同的线程池去处理。 只要分完之后两个任务的执行时间相差不大,那么就会比串行执行来的高效。
因为如果划分之后两个任务执行时间有数据级的差距,那么拆分没有意义。
因为先执行完的任务就要等后执行完的任务,最终的时间仍然取决于后执行完的任务,而且还要加上任务拆分与合并的开销,得不偿失。、