P1720 月落乌啼算钱(斐波那契数列) 题解

 

这是本蒟蒻的第2篇题解......(不喜勿喷

题目背景

题目描述

P1720 

     算完钱后,月落乌啼想着:“你 TMD 坑我,(以下用闽南语读)归粒靠杯靠亩诶,(以下用英读)是伊特游!”于是当爱与愁大神问多少钱时,月落乌啼说了一堆乱码。爱与愁大神说:“算了算了,我只问第 n 样菜价格多少?”月落乌啼写出了:

        ·        Fn=((1+√5)/2)^n-((1-√5)/2)^n  /  √5

由于爱与愁大神学过编程,于是就用 11 分钟的时间求出了 F_nFn​ 的结果。月落乌啼为此大吃一惊。你能学学爱与愁大神求出Fn​ 的值吗?

输入格式

一行一个自然数 nn。

输出格式

只有 11 行一个实数 F_nFn​,保留两位小数。

输入输出样例

输入 #1

6

输出 #1

8.00

说明/提示

对于所有数据:0<=n<=48

本题有两种做法:

1.硬算

  直接将公式带入即可。

2.根据斐波那契数列的特性进行编程

斐波那契数列:1,1,2,3,5,8......

不难发现,斐波那契数列中,F(n)=F(n-

### Java 实现斐波那契数列算法 对于给定的编程问题,可以采用多种方法来实现斐波那契数列。以下是几种不同的方式: #### 方法一:迭代法 这种方法通过循环结构逐步累加前两项得到下一项,适合处理较大的`n`值,并能有效防止数据溢出。 ```java import java.math.BigInteger; import java.util.Scanner; public class FibonacciIterative { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); BigInteger a = BigInteger.ZERO; BigInteger b = BigInteger.ONE; for (int i = 0; i < n; i++) { BigInteger temp = a.add(b); a = b; b = temp; } System.out.println(a.toString()); } } ``` 此代码片段利用了 `BigInteger` 类型以支持非常大的数值运算[^1]。 #### 方法二:递归法 虽然简单直观,但由于存在大量的重复计算,在面对较大输入时效率较低。为了提高性能,通常会结合记忆化技术或者动态规划的思想来进行改进。 ```java class FibonacciRecursive { private static final Map<Integer, Long> memo = new HashMap<>(); public static long fib(int n) { if (n <= 1) return n; if (!memo.containsKey(n)) { memo.put(n, fib(n - 1) + fib(n - 2)); } return memo.get(n); } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); System.out.println(fib(n)); } } ``` 这里引入了一个哈希表用于存储已经计算过的中间结果,从而减少了不必要的重复调用[^2]。 #### 方法三:矩阵快速幂 这是一种高效的解决方案,特别适用于需要频繁查询不同位置上的斐波那契数值的情况。它基于线性代数中的矩阵乘法规则以及指数定律实现了O(logN)时间复杂度下的求解过程。 ```java // 矩阵类定义省略... Matrix base = Matrix.of(new BigDecimal[][]{ {BigDecimal.valueOf(1L), BigDecimal.valueOf(1L)}, {BigDecimal.valueOf(1L), BigDecimal.valueOf(0L)} }); System.out.println(base.pow(n).getEntry(0, 1)); ``` 上述三种方案各有优劣之处,具体选择取决于实际应用场景的需求和个人偏好。值得注意的是,在某些情况下可能还需要考虑到精度损失等问题;因此当涉及到高精度要求的任务时,则应优先选用像 `BigInteger` 或者其他专门设计的大整数库函数[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值