给定一个长为n的序列,对于每个长度大于等于k的区间,取出其第k大的元素,问所有取出的元素中,第m大的那个是多少
考虑二分答案x,则问题转化为求是否有不少于m个区间满足:不少于k个数大于等于x。
考虑使用尺取法做这个判断。
枚举左端点l,找出一个最小的r使其满足条件,则[r,n]中所有点都是符合条件的右端点。由于r的选择具有单调性,我们就可以在O(n)的时间内完成判断。
复杂度O(n*log)
(突然感觉改了个码风也挺好(gui)看(chu)?)
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int N=1e5+10;
LL m;
int n,k,cas,a[N];
int Check(int mid){
int l=1,r=1,sum=(a[1]>=mid);
LL ans=0;
while (1){
if (sum>=k){
ans+=n-r+1;
sum-=(a[l++]>=mid);
}
else{
sum+=(a[++r]>=mid);
}
if (r>n) break;
}
return ans>=m;
}
void Solve(){
scanf("%d%d%lld",&n,&k,&m);
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
int l=1,r=1e9;
while (l<r){
int mid=(l+r+1)>>1;
if (Check(mid)) l=mid;
else r=mid-1;
}
printf("%d\n",l);
}
int main(){
scanf("%d",&cas);
while (cas--) Solve();
return 0;
}