hdu3591 The trouble of Xiaoqian(多重背包问题)

题目大意:

           输入两个整数T和N,T代表一个人要买的东西的总钱数,N代表硬币的种类,接下来N个数V[i]代表各个硬币对应的面值,接着N个数c[i]代表每种硬币对应的数量,假定售货员的每种硬币的数目是无限的,求交易中的硬币的总个数(包括顾客支付的和售货员找回的),且要保证交易的硬币的总个数不大于20000.


解题思路:

       这个题目中要求的是交易中的最少的总硬币的数目,假设dp[j]为支付了j元时的顾客支付的硬币个数,dp[j-t]为支付了j元时,售货员找回的硬币个数,则minnum=(minnum,dp[j]+dp[j-t].

       由于售货员的各种硬币数目是无限的,故对于售货员可以看做是一个完全背包问题,对于顾客则是多重背包问题。具体的一些说明可以参看代码中注释部分。


代码如下:

# include <iostream>
# include <algorithm>
using namespace std;

const int INF=1e8;
int t,n;
int v[105],c[105],dp[20005],dp2[20005];

int main()
{
	freopen("input.txt","r",stdin);
	int count=0;
	while(scanf("%d %d",&n,&t)!=EOF )
	{
		if(n==0 && t==0)
			break;//如果n和t同时为0.结束
		int i,j,k;
		for(i=1;i<=20000;i++)
		{
			dp[i]=dp2[i]=INF;//将状态转移数组初始化为很大的数
		}
		dp[0]=dp2[0]=0;

		for(i=0;i<n;i++)
			scanf("%d",&v[i]);
		for(i=0;i<n;i++)
			scanf("%d",&c[i]);

		//对于售货员来说,每种硬币的数量是无线的,就是完全背包问题
		for(i=0;i<n;i++)
		{
			for(j=v[i];j<=20000;j++)
				dp2[j]=min(dp2[j],dp2[j-v[i]]+1);
		}

		//对于顾客来说,每种硬币的数目有限制,就是多重背包问题
		for(i=0;i<n;i++)
		{
			if(v[i]*c[i]>=20000)//如果这种硬币就能满足交易次数,则是完全背包问题
			{
				for(j=v[i];j<=20000;j++)
				{
					dp[j]=min(dp[j],dp[j-v[i]]+1);
				}
				continue;
			}
			for(k=1;k<c[i];k=k*2)//否则,就是0-1背包问题,这里采用二进制思想
			{
				for(j=20000;j>=v[i]*k;j--)
				dp[j]=min(dp[j],dp[j-k*v[i]]+k);
				c[i]-=k;
			}
			for(j=20000;j>=c[i]*v[i];j--)
				dp[j]=min(dp[j],dp[j-c[i]*v[i]]+c[i]);
		}

		int minnum=INF;//
		for(i=t;i<=20000;i++)//对于实际支付的金额大于t的情况,支付次数就要加上售货员找回的次数
		{
			minnum=min(minnum,dp[i]+dp2[i-t]);
		}
		if(minnum==INF) minnum=-1;
		printf("Case %d: %d\n",++count,minnum);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值