- 博客(15)
- 资源 (15)
- 收藏
- 关注
原创 昇思25天学习打卡营第13天|应用实践-热门LLM及其他AI应用-基于MindNLP+MusicGen生成自己的个性化音乐
MusicGen是来自Meta AI的Jade Copet等人提出的基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本,相关研究成果参考论文《MusicGen直接使用谷歌的及其权重作为文本编码器模型,并使用及其权重作为音频压缩模型。MusicGen解码器是一个语言模型架构,针对音乐生成任务从零开始进行训练。MusicGen 模型的新颖之处在于音频代码的预测方式。
2024-07-19 16:29:36 1020
原创 昇思25天学习打卡营第12天|应用实践-自然语言处理-RNN实现情感分类
最后我们设计一个预测函数,实现开头描述的效果,输入一句评价,获得评价的情感分类。将输入句子进行分词;使用词表获取对应的index id序列;index id序列转为Tensor;送入模型获得预测结果;打印输出预测结果。最后我们预测开头的样例,可以看到模型可以很好地将评价语句的情感进行分类。
2024-07-19 16:28:34 2143
原创 昇思25天学习打卡营第11天|应用实践-自然语言处理-LSTM+CRF序列标注
序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。输入序列清华大学座落于首都北京输出标注BIIIOOOOOBI如上表所示,清华大学和北京是地名,需要将其识别,我们对每个输入的单词预测其标签,最后根据标签来识别实体。
2024-07-19 16:27:45 1032
原创 昇思25天学习打卡营第10天|使用静态图加速
支持构建和计算同时发生,是mindSpore的默认模式,优点:是实时得到中间结果的值,方便调试,缺点: 所有节点都需要被保存,导致难以对整个计算图进行优化。
2024-07-19 16:26:49 590
原创 昇思25天学习打卡营第9天|保存与加载
上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。
2024-07-19 16:23:59 419
原创 昇思25天学习打卡营第8天|模型训练
从网络构建中加载代码,构建一个神经网络模型。nn.ReLU(),nn.ReLU(),超参(Hyperparameters)是可以调整的参数,可以控制模型训练优化的过程,不同的超参数值可能会影响模型训练和收敛速度。wt1wt−η1n∑x∈B∇lxwtwt1wt−ηn1x∈B∑∇lxwt公式中,nnn是批量大小(batch size),ηηη是学习率(learning rate)。另外,wtw_{t}w。
2024-06-30 23:25:02 928
原创 昇思25天学习打卡营第7天|函数式自动微分
神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。
2024-06-28 17:10:22 1081
原创 昇思25天学习打卡营第6天|网络构建
当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。construct意为神经网络(计算图)构建,相关内容详见使用静态图加速。nn.ReLU(),nn.ReLU(),构建完成后,实例化Network对象,并查看其结构。Network<我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。方法不可直接调用。logits在此基础上,我们通过一个。
2024-06-28 17:08:23 888
原创 昇思25天学习打卡营第5天|数据变换 Transforms
通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。–这个map,同上一章的DataSet的map操作是一样的提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。下面分别对其进行介绍。
2024-06-27 18:43:32 790
原创 昇思25天学习打卡营第4天|数据集 Dataset
模块提供了一些常用的公开数据集和标准格式数据集的加载API。对于MindSpore暂不支持直接加载的数据集,可以构造自定义数据加载类或自定义数据集生成函数的方式来生成数据集,然后通过接口实现自定义方式的数据集加载。支持通过可随机访问数据集对象、可迭代数据集对象和生成器(generator)构造自定义数据集,下面分别对其进行介绍。
2024-06-26 19:00:44 797
原创 昇思25天学习打卡营第3天|张量定义 Tensor
张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在n维空间内,有nr个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。r称为该张量的秩或阶(与矩阵的秩和阶均无关系)。张量是一种特殊的数据结构,与数组和矩阵非常相似。张量()是MindSpore网络运算中的基本数据结构,本教程主要介绍张量和稀疏张量的属性及用法。—线性代数里面的多维数组。
2024-06-26 18:57:45 855
原创 昇思25天学习打卡营第2天|昇思平台快速入门
本人java程序员,在接触这个课程之前,在B站学习过李沐的深度学习课程视频,对于深度学习的概念有简单的认识,但是对于其原理并不了解,也不知道如何解决实际问题。
2024-06-25 18:43:36 1173
原创 昇思25天学习打卡营第1天|昇思平台介绍
本人java程序员,在接触这个课程之前,在B站学习过李沐的深度学习课程视频,对于深度学习的概念有简单的认识,但是对于其原理并不了解,也不知道如何解决实际问题。
2024-06-25 15:59:11 191
原创 apache + tomcat + mod_jk 集群部署及Session共享 和 遇到的问题
系统 win7 64位 jdk :1.6 64位java version "1.6.0_45"Java(TM) SE Runtime Environment (build 1.6.0_45-b06)Java HotSpot(TM) 64-Bit Server VM (build 20.45-b01, mixed mode)使用的是 Apache 2.4 + tomcat
2014-12-12 16:37:57 1950
原创 ArcGIS API for JavaScript 3.x linux离线部署
最近要用到ArcGIS API for JavaScript 3.8 的离线部署,按照离线包内的
2014-06-12 11:08:59 1794
nginx在线 离线安装资源包
2019-03-27
tomcat-connectors-1.2.40-windows-x86_64-httpd-2.4.x.zip mod_jk 64位
2014-12-12
mod_jk 64位tomcat-connectors-1.2.39-windows-x86_64-httpd-2.4.x.zip
2014-12-12
Get a handle on the JAX_WS API's handler framework
2013-08-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人