约瑟夫环问题:有n个人围成一圈,顺序编号。从第1个人开始报数(从1-3报数),凡报到3的人退出圈子,问最后留下的是原来第几号的那位?

有n个人围成一圈,顺序编号。从第1个人开始报数(从1-3报数),凡报到3的人退出圈子,问最后留下的是原来第几号的那位?

java代码如下:

int  n = 10;//n的取值
int num = n;//记录剩余数个数
int arr[] = new int[n];//标记剩余数的位置 0 代表存活,初始全部存活   1 代表删除
int flag = 0; //标记报名,到三降0
int del = 3;//扩展字段,将报三的删除,可以任意定义
while(num != 1){//当剩余数量为1时,停止循环
    for(int i = 0;i<n ; i++){//
        if(arr[i] == 0){ //判断当前元素是否存活
            flag ++; //元素存活,报名数加一;每次for循环后,报名数会接着下次循环继续增长,约瑟夫环循环
        }
        if(flag == del){//当报名数为三时
            arr[i] = 1;//将当前元素标记为1,删除操作
            flag = 0;//报名数降为0
            num --;//总人数减去1
        }
    }
}
for(int i = 0;i<arr.length ; i++) {
    if(arr[i] == 0) {
        System.out.println(i+1);//数组下标从0开始
    }
}

有n个人围成一圈,顺序编号。从第1个人开始报数(从1-m报数),凡报到m的人退出圈子,问最后留下的是原来第几号的那位?

int  n = 10;
int num = n;
int arr[] = new int[n];
int flag = 0;
int del =m;//扩展字段,将报三的删除,定义为m
while(num != 1){
    for(int i = 0;i<n ; i++){
        if(arr[i] == 0){
            flag ++;
        }
        if(flag == del){
            arr[i] = 1;
            flag = 0;
            num --;
        }
    }
}
for(int i = 0;i<arr.length ; i++) {
    if(arr[i] == 0) {
        System.out.println(i+1);
    }
}
约瑟夫题是一个古老且著名的题,它描述了n个人围成一圈,从第一个人开始报数,每次报到第m个人,这个人将被杀掉,直到最后只剩下一个人。 这个题可以通过模拟来解答。首先,我们创建一个包含n个人的循环链表,每个节点表示一个人。然后,我们从第一个人开始,按顺序数m个人,直到找到第m个人。然后,我们将这个人从链表中移除,再次从移除的下一个人开始,继续数m个人,一直重复这个过程,直到链表中只剩下一个人。 为了更好地理解,我们可以用一个具体的例子来说明。假设有5个人编号为1,2,3,4,5)围成一圈,从第一个人开始报数,第3个人将被杀掉。 首先,我们从第一个人开始,数1,2,3,第3个人编号为3的人,将其移除。现在剩下4个人:1,2,4,5。接下来,我们从编号为4的人开始,数1,2,3,第3个人编号为2的人,将其移除。现在剩下3个人:1,4,5。我们继续从编号为4的人开始,数1,2,3,第3个人编号为5的人,将其移除。现在剩下2个人:1,4。我们再次从编号为1的人开始,数1,2,3,第3个人编号为1的人,将其移除。最后,只剩下编号为4的人,他是幸存者。 总结来说,约瑟夫题是一个经典的数学题,可以通过模拟来解答。每次从围成一圈的人中按顺序数m个人,将第m个人移除,最后只剩下一个人。这个题具有一定的实际意义,也可以帮助我们理解和运用数学模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值