NSFZOJ #6003. 论战大原题

博客详细介绍了NSFZOJ #6003问题的解决方法,重点在于理解如何利用最大生成树来找出图中第k大的两点间最长路径。博主分享了自己从错误思路到正确理解问题的过程,并阐述了Kruskal算法在解决此问题中的关键作用。
摘要由CSDN通过智能技术生成

NSFZOJ #6003. 论战大原题

题目描述

给定一个 nnn 个点 mmm 条边的无向图。定义一条路径的长度为路径上最小边的权值。定义 dist(i,j)dist(i,j)dist(i,j) 为起点为 iii,终点为jjj 的长度最长的路径的长度。求出第 kkk 大的 dist(i,j)dist(i,j)dist(i,j),其中(i<j)(i<j)(i<j)

输入格式

第一行两个整数 n,m,kn,m,kn,m,k

接下来 mmm 行每行三个整数 u,v,wu,v,w

首先,我们知道模13的原根存在且数量为$\varphi(13-1)=\varphi(12)=4$个。为了求出这4个原根,我们可以逐个测试模13的缩系中的数字是否为原根。 测试1: $1^1 \equiv 1 \pmod{13}$ $1^2 \equiv 1 \pmod{13}$ $1^3 \equiv 1 \pmod{13}$ $1^4 \equiv 1 \pmod{13}$ $1^5 \equiv 1 \pmod{13}$ $1^6 \equiv 1 \pmod{13}$ $1^7 \equiv 1 \pmod{13}$ $1^8 \equiv 1 \pmod{13}$ $1^9 \equiv 1 \pmod{13}$ $1^{10} \equiv 1 \pmod{13}$ $1^{11} \equiv 1 \pmod{13}$ $1^{12} \equiv 1 \pmod{13}$ 由此可知,1不是模13的原根。 测试2: $2^1 \equiv 2 \pmod{13}$ $2^2 \equiv 4 \pmod{13}$ $2^3 \equiv 8 \pmod{13}$ $2^4 \equiv 3 \pmod{13}$ $2^5 \equiv 6 \pmod{13}$ $2^6 \equiv 12 \pmod{13}$ $2^7 \equiv 11 \pmod{13}$ $2^8 \equiv 9 \pmod{13}$ $2^9 \equiv 5 \pmod{13}$ $2^{10} \equiv 10 \pmod{13}$ $2^{11} \equiv 7 \pmod{13}$ $2^{12} \equiv 1 \pmod{13}$ 由此可知,2是模13的原根。 测试3: $3^1 \equiv 3 \pmod{13}$ $3^2 \equiv 9 \pmod{13}$ $3^3 \equiv 1 \pmod{13}$ 由此可知,3不是模13的原根。 测试4: $4^1 \equiv 4 \pmod{13}$ $4^2 \equiv 3 \pmod{13}$ $4^3 \equiv 12 \pmod{13}$ $4^4 \equiv 9 \pmod{13}$ $4^5 \equiv 10 \pmod{13}$ $4^6 \equiv 1 \pmod{13}$ 由此可知,4是模13的原根。 因此,模13的原根是2和4,另外两个原根可以通过2和4的幂运算得到,即$2^3=8$和$4^3=12$。 接下来,我们借助次大原根4构造模13的指数表。模13的指数表包含1到12的所有幂次对应的余数。我们可以通过计算$4^1 \pmod{13}, 4^2 \pmod{13}, 4^3 \pmod{13}$等方式得到所有幂次对应的余数,从而构造出模13的指数表。 模13的指数表如下: \begin{array}{c|cccccccccccc} \text{幂次} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{余数} & 4 & 3 & 12 & 9 & 10 & 1 & 4 & 3 & 12 & 9 & 10 & 1 \\ \end{array}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值