例题8-13:环形跑道

例题8-13介绍了环形跑道上的加油站问题。若每个加油站提供不同量的油,需要找到一个起点,能确保车辆行驶完整个赛道。通过分析,可以得出从某个加油站出发无法到达下一个加油站,则从之前的任何一个加油站出发也无法到达。因此,可以使用枚举法以O(n)复杂度解决此问题,避免枚举某些不必要的点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例题8-13:环形跑道
题意:
环形跑道上的加油站有n个,第i个加油站加油pi单位,开到下个加油站需要qi单位,求一个起点使得从该点出发可以走完全程。
思路:
如果从l出发经过j最后在k加油站前面停下来,那么从j出发一定也是到达不了k的,因为从i出发可以途径j,说明在路过j点还没加油时有>=0的油,而从j点出发在还没加油情况时有0油,所以可以用枚举法枚举起点,而上面情况i–k中间的点不必枚举,模拟,复杂度为O(n);

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<string>
#include<cmath>
#include<set>
#include<queue>
#include<map>
#include<stack>
#include<vector>
#include<list>
#include<deque>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + 10;
const double eps = 1e-6;
const int INF = 1 << 30;
int T, n, m;
int dis[maxn], val[maxn];
int judge(int x)
{
    ll sum = 0, t;
    for(int i = 0; i < n; i++)
    {
        if(i + x > n)t = i + x - n;
        else t = i + x;
        sum += val[t];
        if(sum < dis[t])return i + x + 1;
        sum -= dis[t];
    }
    return x;
}

int main()
{
    scanf("%d",&T);
    int cases = 0;
    while(T--)
    {
        scanf("%d",&n);
        for(int i = 1; i <= n; i++)scanf("%d",&val[i]);
        for(int i = 1; i <= n; i++)scanf("%d",&dis[i]);
        int flag = 0, ans;
        for(int i = 1; i <= n; i++)
        {
            if(judge(i) == i){flag = 1; ans = i; break;}
            else
            {
                i = judge(i) - 1;
                if(i > n)break;
            }
        }
        printf("Case %d: ",++cases);
        if(flag)
        {
            printf("Possible from station %d\n",ans);
        }
        else printf("Not possible\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值