2020ICPC·小米 网络选拔赛热身赛 I-Integration

2020ICPC·小米 网络选拔赛热身赛 I-Integration 裂项+待定系数+找规律


传送门: https://ac.nowcoder.com/acm/contest/8409/I

题意

求 解 ∫ 0 + ∞ 1 ∏ i = 1 n ( a i 2 + x 2 ) d x 求解\int_{0}^{+\infty }\frac{1}{\prod_{i=1}^n(a_i^2+x^2)}dx 0+i=1n(ai2+x2)1dx

思路

想 要 用 分 部 积 分 求 该 定 积 分 是 非 常 非 常 困 难 的 , 而 题 目 给 出 了 ∫ 0 + ∞ 1 1 + x 2 d x = π 2 , 所 以 我 们 就 想 办 法 把 这 个 连 乘 变 成 连 加 , 这 样 就 好 求 了 。 想要用分部积分求该定积分是非常非常困难的,而题目给出了\int_{0}^{+\infty}\frac{1}{1+x^2}dx=\frac{\pi}{2},所以我们就想办法把这个连乘变成连加,这样就好求了。 0+1+x21dx=2π

当 n = 1 时 : 当n=1时: n=1

∫ 0 + ∞ 1 a 2 + x 2 d x = 1 a 2 a r c t a n ( x a ) ∣ 0 + ∞ = π 2 a \int_{0}^{+\infty}\frac{1}{a^2+x^2}dx=\frac{1}{a^2}arctan(\frac{x}{a})|_0^{+\infty}=\frac{\pi}{2a} 0+a2+x21dx=a21arctan(ax)0+=2aπ

当 n = 2 时 : 当n=2时: n=2

只 看 让 式 子 分 解 的 部 分 : 只看让式子分解的部分:

1 a 2 + x 2 1 b 2 + x 2 = α a 2 + x 2 + β b 2 + x 2 = α b 2 + β a 2 + x 2 ( α + β ) ( a 2 + x 2 ) ( b 2 + x 2 ) \frac{1}{a^2+x^2}\frac{1}{b^2+x^2}=\frac{\alpha}{a^2+x^2}+\frac{\beta }{b^2+x^2}=\frac{\alpha b^2+\beta a^2 + x^2(\alpha + \beta)}{(a^2+x^2)(b^2+x^2)} a2+x21b2+x21=a2+x2α+b2+x2β=(a2+x2)(b2+x2)αb2+βa2+x2(α+β)

则 则 { α b 2 + β a 2 = 1 α + β = 1 \left\{\begin{matrix} \alpha b^2+\beta a^2 &=1 & \\ \alpha + \beta &=1 & \end{matrix}\right. {αb2+βa2α+β=1=1

解 得 : 解得:
{ α = 1 b 2 − a 2 β = 1 a 2 − b 2 \left\{\begin{matrix} \alpha & =\frac{1}{b^2-a^2} & \\ \beta & =\frac{1}{a^2-b^2} & \end{matrix}\right. {αβ=b2a21=a2b21

转 化 为 : 转化为:

∫ 0 + ∞ ( 1 b 2 − a 2 ) ( 1 a 2 + x 2 ) + ( 1 a 2 − b 2 ) ( 1 b 2 + x 2 ) d x = 1 b 2 − a 2 ∗ 1 2 a + 1 a 2 − b 2 ∗ 1 2 b \int_{0}^{+\infty }(\frac{1}{b^2-a^2})(\frac{1}{a^2+x^2})+(\frac{1}{a^2-b^2})(\frac{1}{b^2+x^2})dx=\frac{1}{b^2-a^2}*\frac{1}{2a}+\frac{1}{a^2-b^2}*\frac{1}{2b} 0+(b2a21)(a2+x21)+(a2b21)(b2+x21)dx=b2a212a1+a2b212b1

当 n = 3 时 : 当n=3时: n=3

1 a 2 + x 2 1 b 2 + x 2 1 c 2 + x 2 = α a 2 + x 2 + β b 2 + x 2 + γ c 2 + x 2 \frac{1}{a^2+x^2}\frac{1}{b^2+x^2}\frac{1}{c^2+x^2}=\frac{\alpha}{a^2+x^2}+\frac{\beta}{b^2+x^2}+\frac{\gamma}{c^2+x^2} a2+x21b2+x21c2+x21=a2+x2α+b2+x2β+c2+x2γ
= α b 2 c 2 + β a 2 c 2 + γ a 2 b 2 + x 2 ( α ( b 2 + c 2 ) + β ( a 2 + c 2 ) + γ ( a 2 + b 2 ) ) + x 4 ( α + β + γ ) ( a 2 + x 2 ) ( b 2 + x 2 ) ( c 2 + x 2 ) =\frac{\alpha b^2c^2+\beta a^2c^2+\gamma a^2b^2+x^2(\alpha (b^2+c^2)+\beta (a^2+c^2)+\gamma (a^2+b^2))+x^4(\alpha+\beta+\gamma)}{(a^2+x^2)(b^2+x^2)(c^2+x^2)} =(a2+x2)(b2+x2)(c2+x2)αb2c2+βa2c2+γa2b2+x2(α(b2+c2)+β(a2+c2)+γ(a2+b2))+x4(α+β+γ)
即 求 解 : 即求解:

{ α + β + γ = 0 α b 2 c 2 + β a 2 c 2 + γ a 2 b 2 = 1 α ( b 2 + c 2 ) + β ( a 2 + c 2 ) + γ ( a 2 + b 2 ) = 0 \left\{\begin{matrix} \alpha+\beta+\gamma& = & 0\\ \alpha b^2c^2+\beta a^2c^2+\gamma a^2b^2&= & 1\\ \alpha (b^2+c^2)+\beta (a^2+c^2)+\gamma (a^2+b^2) & = &0 \end{matrix}\right. α+β+γαb2c2+βa2c2+γa2b2α(b2+c2)+β(a2+c2)+γ(a2+b2)===010

需 要 增 广 矩 阵 求 解 , 求 得 : 需要增广矩阵求解,求得: 广

{ α = 1 ( b 2 − a 2 ) ( c 2 − a 2 ) β = 1 ( a 2 − b 2 ) ( c 2 − b 2 ) γ = 1 ( a 2 − c 2 ) ( b 2 − c 2 ) \left\{\begin{matrix} \alpha &= &\frac{1}{(b^2-a^2)(c^2-a^2)} \\ \beta &= &\frac{1}{(a^2-b^2)(c^2-b^2)} \\ \gamma &= & \frac{1}{(a^2-c^2)(b^2-c^2)} \end{matrix}\right. αβγ===(b2a2)(c2a2)1(a2b2)(c2b2)1(a2c2)(b2c2)1

∫ 0 + ∞ 1 ( a 2 + x 2 ) ( b 2 + x 2 ) ( c 2 + x 2 ) d x \int_{0}^{+\infty }\frac{1}{(a^2+x^2)(b^2+x^2)(c^2+x^2)}dx 0+(a2+x2)(b2+x2)(c2+x2)1dx
= 1 ( b 2 − a 2 ) ( c 2 − a 2 ) 1 2 a + 1 ( a 2 − b 2 ) ( c 2 − b 2 ) 1 2 b + 1 ( a 2 − c 2 ) ( b 2 − c 2 ) 1 2 c =\frac{1}{(b^2-a^2)(c^2-a^2)} \frac{1}{2a}+\frac{1}{(a^2-b^2)(c^2-b^2)}\frac{1}{2b}+ \frac{1}{(a^2-c^2)(b^2-c^2)}\frac{1}{2c} =(b2a2)(c2a2)12a1+(a2b2)(c2b2)12b1+(a2c2)(b2c2)12c1

根 据 上 面 的 列 举 , 大 大 推 断 出 该 式 子 的 规 律 , 即 对 于 根据上面的列举,大大推断出该式子的规律,即对于

∫ 0 + ∞ 1 ∏ i = 1 n ( a i 2 + x 2 ) d x \int_{0}^{+\infty }\frac{1}{\prod_{i=1}^n(a_i^2+x^2)}dx 0+i=1n(ai2+x2)1dx

a n s = ∑ i = 1 n 1 2 a i ( ∏ j = 1    j ≠ i n 1 a j 2 − a i 2 ) ans=\sum_{i=1}^n\frac{1}{2a_i}\left (\prod_{j=1\;j\neq i}^n\frac{1}{a_j^2-a_i^2} \right ) ans=i=1n2ai1j=1j=inaj2ai21

Code

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pdd;

#define INF 0x3f3f3f3f
#define lowbit(x) x & (-x)
#define mem(a, b) memset(a , b , sizeof(a))
#define FOR(i, x, n) for(int i = x;i <= n; i++)

// const ll mod = 998244353;
 const ll mod = 1e9 + 7;
// const double eps = 1e-6;
// const double PI = acos(-1);
// const double R = 0.57721566490153286060651209;

const int N = 105;

double dis(double x1, double y1, double x2, double y2) {
    return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}

ll quick_pow(ll a, ll b) {
    ll ans = 1;
    while(b) {
        if(b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans % mod;
}

void solve() {
    int n;
    while(cin >> n) {
        ll ans = 0;
        ll a[30005];
        for(int i = 1;i <= n; i++) {
            cin >> a[i];
        };
        for(int i = 1;i <= n; i++) {
            ll t = 1;
            for(int j = 1;j <= n; j++) {
                if(i == j) continue;
                t = t * (((a[j] * a[j] % mod - a[i] * a[i] % mod) % mod + mod) % mod) % mod;
            }
            t = t * 2 % mod * a[i] % mod;
            ans = (ans + quick_pow(t, mod - 2)) % mod;
        }
        cout << ans % mod << endl;
    }
}

signed main() {
    ios_base::sync_with_stdio(false);
    //cin.tie(nullptr);
    //cout.tie(nullptr);
#ifdef FZT_ACM_LOCAL
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
    signed test_index_for_debug = 1;
    char acm_local_for_debug = 0;
    do {
        if (acm_local_for_debug == '$') exit(0);
        if (test_index_for_debug > 20)
            throw runtime_error("Check the stdin!!!");
        auto start_clock_for_debug = clock();
        solve();
        auto end_clock_for_debug = clock();
        cout << "Test " << test_index_for_debug << " successful" << endl;
        cerr << "Test " << test_index_for_debug++ << " Run Time: "
             << double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
        cout << "--------------------------------------------------" << endl;
    } while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug));
#else
    solve();
#endif
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值