传送门: https://ac.nowcoder.com/acm/contest/8282/D
题意
求 解 ∑ i = 1 n ∑ j = 1 n μ ( i j ) 求解\sum_{i=1}^n\sum_{j=1}^n\mu(ij) 求解i=1∑nj=1∑nμ(ij)
思路
由 积 性 函 数 的 性 质 , 当 m 和 n 互 质 的 时 候 , μ ( m n ) = μ ( m ) μ ( n ) 。 即 由积性函数的性质,当m和n互质的时候,\mu(mn)=\mu(m)\mu(n)。即 由积性函数的性质,当m和n互质的时候,μ(mn)=μ(m)μ(n)。即
∑ i = 1 n ∑ j = 1 n μ ( i j ) = ∑ i = 1 n ∑ j = 1 n μ ( i ) μ ( j ) [ g c d ( i , j ) = 1 ] \sum_{i=1}^n\sum_{j=1}^n\mu(ij)=\sum_{i=1}^n\sum_{j=1}^n\mu(i)\mu(j)[gcd(i,j)=1] i=1∑nj=1∑nμ(ij)=i=1∑nj=1∑nμ(i)μ(j)[gcd(i,j)=1]
= ∑ i = 1 n ∑ j = 1 n μ ( i ) μ ( j ) ∑ d ∣ i d ∣ j μ ( d ) =\sum_{i=1}^n\sum_{j=1}^n\mu(i)\mu(j)\sum_{d|i\;\;d|j}\mu(d) =i=1∑nj=1∑nμ(i)μ(j)d∣id∣j∑μ(d)
枚 举 d : 枚举d: 枚举d:
= ∑ d = 1 n μ ( d ) ∑ d ∣ i μ ( i ) ∑ d ∣ j μ ( j ) =\sum_{d=1}^n\mu(d)\sum_{d|i}\mu(i)\sum_{d|j}\mu(j) =d=1∑nμ(d)d∣i∑μ(i)d∣j∑μ(j)
= ∑ d = 1 n μ ( d ) ( ∑ d ∣ i n μ ( i ) ) 2 =\sum_{d=1}^n\mu(d)\left ( \sum_{d|i}^n\mu(i) \right ) ^2 =d=1∑nμ(d)⎝⎛d∣i∑nμ(i)⎠⎞2
=
∑
d
=
1
n
μ
(
d
)
(
∑
i
=
1
n
d
μ
(
i
∗
d
)
)
2
=\sum_{d=1}^n\mu(d)\left ( \sum_{i=1}^{\frac{n}{d}}\mu(i*d) \right ) ^2
=d=1∑nμ(d)⎝⎛i=1∑dnμ(i∗d)⎠⎞2
我
们
枚
举
d
,
对
于
每
一
个
n
,
都
会
有
k
d
≤
n
<
(
k
+
1
)
d
,
所
以
在
k
d
和
(
k
+
1
)
d
−
1
之
间
都
会
对
答
案
有
贡
献
,
所
以
可
以
先
差
分
在
取
前
缀
和
即
可
。
我们枚举d,对于每一个n,都会有kd\leq n < (k+1)d,所以在kd和(k+1)d-1之间都会对答案有贡献,所以可以先差分在取前缀和即可。
我们枚举d,对于每一个n,都会有kd≤n<(k+1)d,所以在kd和(k+1)d−1之间都会对答案有贡献,所以可以先差分在取前缀和即可。
Code
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pdd;
#define INF 0x3f3f3f3f
#define lowbit(x) x & (-x)
#define mem(a, b) memset(a , b , sizeof(a))
#define FOR(i, x, n) for(int i = x;i <= n; i++)
// const ll mod = 998244353;
// const ll mod = 1e9 + 7;
// const double eps = 1e-6;
// const double PI = acos(-1);
// const double R = 0.57721566490153286060651209;
const int N = 5e4 + 10;
int mu[N]; // 莫比乌斯函数
bool is_prime[N];
int prime[N];
int cnt;
int ans[N + 10];
void init()
{
mu[1] = 1;
is_prime[0] = is_prime[1] = true;
for(int i = 2;i < N; i++) {
if (!is_prime[i]) {
mu[i] = -1;
prime[++cnt] = i;
}
for (int j = 1; j <= cnt && i * prime[j] < N; j++) {
is_prime[i * prime[j]] = true;
if (i % prime[j] == 0) {
mu[i * prime[j]] = 0;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for(int d = 1;d < N; d++) {
int tmp = 0;
for(int i = d;i < N; i += d) {
int l = i;
int r = min(l + d - 1, N);
tmp += mu[l];
ans[l] += mu[d] * tmp * tmp;
ans[r + 1] -= mu[d] * tmp * tmp;
}
}
for(int i = 1;i < N; i++) ans[i] += ans[i - 1];
}
void solve()
{
init();
int _;
cin >> _;
while(_--) {
int x;
cin >> x;
cout << ans[x] << endl;
}
}
signed main() {
ios_base::sync_with_stdio(false);
//cin.tie(nullptr);
//cout.tie(nullptr);
#ifdef FZT_ACM_LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
signed test_index_for_debug = 1;
char acm_local_for_debug = 0;
do {
if (acm_local_for_debug == '$') exit(0);
if (test_index_for_debug > 20)
throw runtime_error("Check the stdin!!!");
auto start_clock_for_debug = clock();
solve();
auto end_clock_for_debug = clock();
cout << "Test " << test_index_for_debug << " successful" << endl;
cerr << "Test " << test_index_for_debug++ << " Run Time: "
<< double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
cout << "--------------------------------------------------" << endl;
} while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug));
#else
solve();
#endif
return 0;
}