NOIP2023模拟13联测34 B.competition

NOIP2023模拟13联测34 B.competition

题目大意

现在有 n n n 个区间 [ l i , r i ] [l_i , r_i] [li,ri] ,现在问你选取若干的连续的区间的区间并的大小的和。

思路

p r e i , j pre_{i , j} prei,j 表示前 i − 1 i - 1 i1 个区间内,包含点 j j j 的最靠右的数是多少。

可以发现答案就是
∑ i = 1 n ( r i − l i + 1 ) ∗ i ∗ ( n − i + 1 ) − p r e i , j ∗ ( n − i + 1 ) \sum_{i = 1}^n (r_i - l_i +1) * i * (n - i + 1) - pre_{i , j} * (n - i +1) i=1n(rili+1)i(ni+1)prei,j(ni+1)
也就是这个区间被记入答案的次数乘上区间的大小再减去重复的次数

可以用一棵线段树维护加离散化来维护。

先统计答案,然后用线段树更新 p r e pre pre

要卡常

code

#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int N = 1e6 + 5;
const LL mod = 1e9 + 7; 
int n , m , re1;
LL l[N] , r[N] , re[N << 2] , tr[N << 4] , lzy[N << 4] , ans;
unordered_map<LL , int> id;
inline void pushdown (int p , int l , int r) {
    if (!lzy[p]) return;
    int mid = l + r >> 1;
    tr[p << 1] = (re[mid + 1] - re[l] + mod) % mod * lzy[p] % mod;
    tr[p << 1 | 1] = (re[r + 1] - re[mid + 1] + mod) % mod * lzy[p] % mod;
    lzy[p << 1] = lzy[p << 1 | 1] = lzy[p];
    lzy[p] = 0;
}
inline LL Mod (LL x) { return x >= mod ? x - mod : x; }
inline LL qc (int p , int l , int r , int L , int R , LL x) {
    if (L <= l && R >= r) {
        LL z = tr[p];
        tr[p] = (re[r + 1] - re[l]) % mod * x;
        lzy[p] = x;
        return z;
    }
    else {
        int mid = l + r >> 1;
        LL z = 0;
        pushdown (p , l , r);
        if (L <= mid) z += qc (p << 1 , l , mid , L , R , x);
        if (mid < R) z += qc (p << 1 | 1 , mid + 1 , r , L , R , x);
        tr[p] = tr[p << 1] + tr[p << 1 | 1];
        return z;
    }
}
inline LL ksm (LL x , LL y) {
    LL z = 1;
    while (y) {
        if (y & 1) z = z * x % mod;
        y >>= 1;
        x = x * x % mod;
    }
    return z;
}
LL read () {
    LL val = 0;
    char ch = getchar ();
    while (ch < '0' || ch > '9') ch = getchar ();
    while (ch >= '0' && ch <= '9') {
        val = val * 10 + (ch - '0');
        ch = getchar ();
    }
    return val;
}
int main () {
    freopen ("competition.in" , "r" , stdin);
    freopen ("competition.out" , "w" , stdout); 
    n = read () , m = read ();
    for (int i = 1 ; i <= n ; i ++) {
        l[i] = read () , r[i] = read ();
        re[++re1] = l[i];
        re[++re1] = r[i] + 1;
    }
    sort (re + 1 , re + re1 + 1);
    m = unique(re + 1 , re + re1 + 1) - re - 1;
    for (int i = 1 ; i <= m ; i ++) id[re[i]] = i;
    for (int i = 1 ; i <= n ; i ++)
        ans = (ans + qc (1 , 1 , m - 1 , id[l[i]] , id[r[i] + 1] - 1 , i) % mod * (n - i + 1)) % mod;
    ans = Mod (-ans + mod);
    for (int i = 1 ; i <= n ; i ++) 
        ans = (ans + (r[i] - l[i] + 1) % mod * i % mod * (n - i + 1)) % mod;
    printf ("%lld" , ans * ksm ((1ll * n * (n + 1) / 2) % mod , mod - 2) % mod);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值