Hadoop主要由HDFS(Hadoop分布式文件系统)和MapReduce两个核心部分组成。其中最底部就是HDFS,它被用来存储Hadoop集群中所有存储节点上的文件。
1、HDFS的产生背景
随着数据量越来越大,在一个操作系统管辖的范围内存不下了,那么就需要分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件管理系统中的一种。
2、HDFS概念
(1)高容错性
I、数据自动保存多个副本。它可以通过增加副本的形式,提高容错性。
II、某一个副本丢失以后,它可以自动恢复。
(2)适合大规模处理
I、数据规模:能够处理数据规模达到GB、TB、甚至PB级别的数据。
II、文件规模:能够处理百万规模以上的文件数量,数量相当大。
(3)可构建在廉价机器上。
3、缺点
(1)无法高效的对大量小文件进行存储。
因为存储大量小文件的话,会占用大量的NameNode内存来存储文件,NameNode的内存总是有限的。
小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标。
(2)不支持并发写入、文件随机修改
一个文件只能有一个写,不允许多个线程同时写。
仅支持数据append(追加),不支持文件的随机修改。
4、HDFS组成架构
HDFS架构主要由四个部分组成,分别为HDFS Client、NameNode、DataNode和Secondary NameNode。下面分别介绍这四个组成部分。
(1)Client:客户端
文件切分:文件上传到HDFS的时候,Client将文件切分成一个一个的Block,然后存储到各个DataNode上。
与NameNode交互,获取文件的位置信息。
与DataNode交互,读取或者写入数据。
Client提供一些命令来管理HDFS,比如启动或者关闭HDFS;
Client可以通过一些命令来访问HDFS.
(2)NameNode:就是Master,它是一个主管,管理者。
管理HDFS的名称空间。
管理数据块(Block)映射信息。
配置副本策略。
处理客户端读写请求。
(3)DataNode:就是Slave。NameNode下达命令,DataNode执行实际的操作。
存储实际的数据块。
执行数据块的读/写操作。
(4)Secondary NameNode:它不是NameNode的候补,当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务。
辅助NameNode,分担其工作量。
定期合并Fsimage和Edits,并推送给NameNode。
在紧急情况下,可辅助恢复NameNode。
5、HDFS文件块的大小
HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数(dfs.blocksize)来规定,在hadoop2.x版本中,默认大小是128M,老版本中是64M。
思考:为什么块的大小不能设置的太小,也不能设置的太大?
HDFS的块比磁盘的块大,其目的是为了最小化寻址开销。如果块设置的足够大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。因而,传输一个由多个块组成文件的时间取决于磁盘传输速率。
当有节点要访问某个文件的时候,它会先访问namenode,获取文件的位置信息,然后和dataNode直接通讯获取数据块,(类似目录的作用)
6、Hdfs读写文件的过程
(1)HDFS读取文件过程
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
Path file = new Path("demo.txt");
FSDataInputStream inStream = fs.open(file);
String data = inStream.readUTF();
System.out.println(data);
inStream.close();
(2)HDFS写文件的过程
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
Path file = new Path("demo.txt");
FSDataOutputStream outStream = fs.create(file);
outStream.writeUTF("Welcome to HDFS Java API!!!");
outStream.close();