样例数据1
输入
2 2
..
.X
输出
0.888889
样例数据2
输入
3 3
…
.X.
…
输出
2.000000
分析:根据题目所给的障碍物的特殊性质,可知最短路径只可能是(水平宽+铅垂高)或者(水平宽+铅垂高+2)(就是障碍物一直挡住去路只能绕一下的情况,如下图所示),所以只需把所有位置到其他所有位置(包括自己)的距离都加起来,再加上所有特殊的2,最后除以路径总数,可得答案。
100分代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<cctype>
#include<iomanip>
#include<queue>
#include<set>
using namespace std;
int getint()
{
int sum=0,f=1;
char ch;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-')
{
f=-1;
ch=getchar();
}
for(;ch>='0'&&ch<='9';ch=getchar())
sum=(sum<<3)+(sum<<1)+ch-48;
return sum*f;
}
const int N=1005;
char s[N];
int totx,n,m,liex[N],hangx[N];
long long work(int n,int m,int a[])
{
long long res=0;
for(int i=1;i<=n;++i)//用行来举例,枚举每一行
{
long long sig=0,tot=m-a[i];//记录障碍右侧还有多少个点
for(int j=1;j<=n;++j)//枚举其他所有行(包括自己)
if(a[j])//如果这一行有障碍物
sig+=(m-1)*abs(i-j);//那么只有m-1个点可以站人,就只需求m-1个铅垂高
else
sig+=m*abs(i-j);
if(a[i])//同理,这一行有障碍物的话,那么只有m-1个点可以站人,就只需求m-1个铅垂高
res+=(m-1)*sig;
else
res+=m*sig;
if(a[i])//若本行有障碍物开始特判
{
int l=i-1,r=i+1;
while(a[l]>a[l+1])//向上枚举,如果每行都有挡住去路的障碍物
tot+=m-a[l],l--;//加上从左边无法最短到达的点
while(a[r]>a[r-1])//向下枚举同理
tot+=m-a[r],r++;
res+=2*2*tot*(a[i]-1);//从左到右无法直接到达的都加2,而从右到左也不能到达,所以*2
}
}
return res;
}
int main()
{
freopen("length.in","r",stdin);
freopen("length.out","w",stdout);
n=getint();m=getint();
for(int i=1;i<=n;++i)
{
scanf("%s",s);
for(int j=1;j<=m;++j)
if(s[j-1]=='X')
{
hangx[i]=j;//存这一行第j个位置有障碍物
liex[j]=i;//存这一列第i个位置有障碍物
totx++;
}
}
int tot=n*m-totx;//所有能站人的点,那么tot*tot就是起点和终点总数
double ans=(work(n,m,hangx)+work(m,n,liex))*1.0/tot/tot;//分别求水平宽和铅垂高
printf("%0.6f\n",ans);
return 0;
}
本题结。