[NOIP2016真题]组合数问题

博客介绍了NOIP2016提高组的一道组合数问题,要求求解满足特定条件的组合数对。通过使用杨辉三角和前缀和的方法,可以有效地计算出满足k倍数条件的(i,j)对的数量。样例数据和解题思路一并给出,强调了预处理和前缀和在解决此类问题中的重要性。" 86578645,7652696,SIRS传染病模型分析与MATLAB实现,"['数学建模', '传染病模型', 'MATLAB编程', '动力系统', '控制策略']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先给一个数据不水的提交地址:http://uoj.ac/problem/263

题目背景
NOIP2016 提高组 Day2 T1

题目描述
组合数这里写图片描述表示的是从 n 个物品中选出 m 个物品的方案数。举个例子,从 (1,2,3) 三个物品中选择两个物品可以有 (1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 的一般公式:
这里写图片描述
其中 n!=1×2×…×n 。

小葱想知道如果给定 n,m 和 k,对于所有的 0≤i≤n,0≤j≤min(i,m) 有多少对 (i,j) 满足这里写图片描述是 k 的倍数。

输入格式
第一行有两个整数 t,k,其中 t 代表该测试点总共有多少组测试数据,k 的意义见【问题描述】。

接下来 t 行每行两个整数 n,m,其中 n,m 的意义见【问题描述】。

输出格式
输出 t 行,每行一个整数代表所有的 0≤i≤n,0≤j≤min(i,m) 中有多少对 (i,j) 满足

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值