- 博客(5)
- 收藏
- 关注
原创 深耕大数据分析与应用:从理论到实践的成长与感悟
大数据分析与应用的学习之旅,是一段充满挑战与收获的旅程。通过这段学习,我系统掌握了数据预处理、EDA、建模分析等核心技能,积累了丰富的编程实践经验,更重要的是,建立了“数据驱动决策”的思维模式。在未来的学习和工作中,我将继续深耕以下几个方向:1. 深化技术学习:重点学习Spark、Flink等分布式计算框架,提升处理海量数据的能力;深入研究机器学习和深度学习算法,提升模型构建和优化能力。2. 加强业务理解:深入了解行业业务逻辑,将数据分析与业务场景更紧密地结合,提升分析结果的落地价值。
2025-12-25 15:20:38
796
原创 Hadoop心得体会
其实WordCount案例虽然简单,但已经覆盖了MapReduce的核心逻辑:用分治思想拆分大任务,用映射-归约思想处理数据,Hadoop框架负责底层的分布式调度、数据传输和容错。对于新手来说,不用一开始就纠结底层原理,先把这个案例的代码跑通,理解清楚Map和Reduce的作用,再慢慢深入优化技巧和分布式特性。记住:MapReduce编程的核心是“把业务逻辑拆成Map和Reduce两个函数”,剩下的分布式处理工作,Hadoop都会帮你搞定。
2025-12-03 15:51:19
598
原创 数据可视化心得体会
在当今数字化时代,数据如同汹涌的浪潮,不断地向我们涌来。从商业领域的销售数据、市场调研数据,到科学研究中的实验数据、观测数据,再到日常生活中的健康数据、消费数据,数据的规模和复杂性与日俱增。面对如此庞大的数据量,如何从中提取有价值的信息,成为了摆在我们面前的一大挑战。数据可视化,正是应对这一挑战的有力武器。数据可视化,简单来说,就是将数据以图形、图表、地图、信息图等直观的视觉形式呈现出来,让数据中的信息和模式一目了然。它不仅仅是一种展示数据的方式,更是一种强大的数据分析和沟通工具。
2025-11-08 17:21:52
706
原创 数据可视化心得体会
**观察分布**:**直方图**(用于单一变量的分布)、**箱线图**(用于显示中位数、四分位数和异常值)、**散点图**(用于两个连续变量的关系)。4. **叙事与说服**:高级的可视化能够将一个复杂的故事串联起来,引导观众沿着你的逻辑思路前进,最终产生共鸣并被说服。* **高精度通道**:基于位置的编码(如散点图)、基于长度的编码(如柱状图)是人类感知最精确的。* **揭示关系**:**散点图**是研究两个变量相关性的利器,**气泡图**则可以引入第三个变量(用气泡大小表示)。
2025-11-02 22:29:13
362
原创 Python数据分析可视化学习:从基础到实践的成长之路
而seaborn是基于matplotlib开发的高级库,它简化了绘图流程,内置了美观的样式和常用的统计可视化功能(如回归图、箱线图等),能让我们更高效地画出具有统计意义且美观的图形,不过它的很多功能底层还是依赖matplotlib实现,二者互补,不是替代关系。直方图用于展示数据的分布情况,它的区间是连续的,柱子之间没有间隙,比如前面绘制的电影评分分布直方图,每个柱子代表一个评分区间的频率。箱线图能很好地展示不同年份票房数据的离散程度、中位数、异常值等信息,帮助发现某些年份票房的特殊表现。
2025-06-23 08:50:12
319
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅