算法训练 王、后传说
时间限制:1.0s 内存限制:256.0MB
问题描述
地球人都知道,在国际象棋中,后如同太阳,光芒四射,威风八面,它能控制横、坚、斜线位置。
看过清宫戏的中国人都知道,后宫乃步步惊心的险恶之地。各皇后都有自己的势力范围,但也总能找到相安无事的办法。
所有中国人都知道,皇权神圣,伴君如伴虎,触龙颜者死......
现在有一个n*n的皇宫,国王占据他所在位置及周围的共9个格子,这些格子皇后不能使用(如果国王在王宫的边上,占用的格子可能不到9个)。当然,皇后也不会攻击国王。
现在知道了国王的位置(x,y)(国王位于第x行第y列,x,y的起始行和列为1),请问,有多少种方案放置n个皇后,使她们不能互相攻击。
输入格式
一行,三个整数,皇宫的规模及表示国王的位置
输出格式
一个整数,表示放置n个皇后的方案数
样例输入
8 2 2
样例输出
10
数据规模和约定
n<=12
分析:n皇后问题,附加一个九宫皇宫的判断。
代码:
#include<iostream>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
int n, kX, kY;
int dir[9][2] = { {-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 0}, {0, 1}, {1, -1}, {1, 0}, {1, 1} };
vector<int> visit;
vector<int> pY;
int ans = 0;
int check(int x, int y) {
for (int i = 0; i < 9; i++) {
int nX = kX + dir[i][0];
int nY = kY + dir[i][1];
if (nX >= 0 && nX < n && nY >= 0 && nY < n) {
if (x == nX && y == nY) {
return 0;
}
}
}
for (int i = 0; i < x; i++) {
if (abs(x - i) == abs(y - pY[i])) {
return 0;
}
}
return 1;
}
void dfs(int x) {
if (x == n) {
ans++;
return;
}
for (int y = 0; y < n; y++) {
if (check(x, y) && !visit[y]) {
visit[y] = 1;
pY[x] = y;
dfs(x + 1);
visit[y] = 0;
}
}
}
int main() {
cin >> n >> kX >> kY;
kX--;
kY--;
visit.resize(n);
pY.resize(n);
dfs(0);
cout << ans << endl;
return 0;
}