神舟g7 ct7vk 显卡性能大幅下降的问题

博客围绕ct7vk笔记本展开,该本采用同方模具,双烤功耗达180w,可能出现主板偷电问题,如插电充不满。电池挂掉后电脑呈低功耗状态,拔掉电池测试,显卡性能降为1/3。解决办法是换电池,建议配220w电源防偷电。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      ct7vk这个机子是同方的模具,配备电源是180w,但是经过功率计测试后,双烤情况下,功耗是整整180w,这有可能会引起在玩某些大型3A游戏情况下,偷取电池电量的问题。网上很多用户都暴露了这个问题,什么插着电源充不满电之类的,都是因为主板偷电引起的。

      当这个机子的电池挂掉后,就是永远处于0%的状态,你的电脑会处于一种低功耗的状态下,系统级更改电源模式是不管用的,我怀疑是bios设置,但是没有能力去修改bios的一些功耗。

      其实这种低功耗模式很好测试,你们只需要把电池拔掉,然后只用180w电源运行电脑,去跑测试软件就直到了,显卡性能会下降到1/3。双烤情况下,整机功耗80w,通过aida64去查看功耗,cpu大概是35w,gpu是40w。但是你们要清楚gtx1660ti这个移动版gpu,设计功耗是80w,所以很明显,没有了电池的辅助,主板供电只有80w左右,你们可以自己去随便测试,拔掉电池即可。

     所以出现了显卡性能大幅下降的情况,100%是电池出问题了,很好解决,淘宝买个电池换上就行了,同时建议更换一个220w电源,防止主板从电池偷电,这样会导致电池挂掉。

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值