GPT-2生成式多轮对话入门-----深入理解“用于中文闲聊的GPT2模型”项目

UPDATE

2.28.2020

  • 纠正之前文末的思维误区。

2.26.2020

本文为对于GPT2 for Chinese chitchat项目的理解与学习
项目代码链接:
https://github.com/yangjianxin1/GPT2-chitchat

深入理解“用于中文闲聊的GPT2模型”项目

论文部分提炼

1. Improving Language Understandingby Generative Pre-Training(GPT)

摘要

自然语言理解包括一系列不同的任务,如文本蕴涵、问答、语义相似性评估和文档分类。尽管大型的未标记文本语料库非常丰富,但用于学习这些特定任务的标记数据却非常稀少,这使得对有偏向性的模型来说,要充分执行这些任务是一个挑战。与以前的方法相比,我们在微调期间使用任务感知的输入转换来实现有效的转换,同时要求对模型体系结构进行最小的更改。我们在一系列自然语言理解的基准上证明了我们的方法的有效性,我们的面向一般任务模型优于使用专门为每项任务设计体系结构的训练模型,在所研究的12项任务中,有9项显著提高了技术水平。

介绍

在自然语言处理(NLP)中,有效地从原始文本中学习是减轻对监督学习依赖的关键。
然而,由于两个主要原因,利用未标记文本中超过单词级别的信息是一个挑战。
首先,不清楚什么类型的优化目标在学习对传输有用的文本表示方面最有效。最近的研究着眼于不同的目标,如语言建模,机器翻译,语篇连贯,每一种方法在不同的任务上都优于其他方法。
第二,对于将这些学习到的表象传递给目标任务的最有效方式,目前还没有达成共识。
现有技术涉及将任务特定的更改与模型体系结构相结合。使用内部学习方案并添加辅助学习目标。这些不确定性使得开发有效的语言处理半监督学习方法变得非常困难。本文采用无监督预训练和监督微调相结合的方法,探讨了一种半监督的语言理解任务方法。我们的目标是学习一种普遍的表达方式,这种表达方式很少适应各种各样的任务。我们假设使用人工标注的训练示例(目标任务)访问一个大的未标记文本语料库和多个数据集。我们的设置不要求这些目标任务与未标记的语料库位于同一域中。

我们采用两阶段训练程序。首先,我们使用语言对未标记的数据进行建模,以学习神经网络模型的初始参数。随后,我们使用相应的有监督目标将这些参数应用于目标任务。

对于我们的模型架构,我们使用Transformer,它已经被证明在各种任务上都有很强的执行能力,比如机器翻译、文档生成和语法分析。与RNN等替代方案相比,这种模型选择为我们提供了一个更结构化的内存,用于处理文本中的长期依赖项,从而在各种任务中产生健壮的转换性能。 在转换过程中,我们使用从交叉样式( traversal-style)方法派生的特定于任务的输入自适应,该过程将结构化文本输入作为单个连续的令牌序列。正如我们在实验中所证明的,这些调整使我们能够有效地微调,对预先训练的模型的架构进行最小的更改。

最近工作

NLP的半监督学习

这种范式广泛应用于序列标记或文本分类,最早的方法是使用未标记的数据来计算单词级或短语级的统计信息,然后将其用作一个监督模型中的特征。在过去的几年里,研究人员已经证明了使用单词嵌入,即在未标记的语料库上进行训练,来提高任务的平均性能。然而,这些方法主要是传递单词级的信息,而我们的目标是获取更高级别的语义。
最近的方法已经研究了从未标记的数据中学习和使用超过单词级别的语义,短语级或句子级的嵌入,可以使用未标记的语料库进行训练,已经被用来将文本编码成适合各种目标任务的向量表示。

无监督预训练

无监督预训练是半监督学习的一种特殊情况,其目的是寻找一个好的初始点,而不是修改监督学习目标。早期的工作探索了该技术在图像分类和分类任务中的应用,随后的研究表明,预训练可以作为一种正则化方案,使深层神经网络具有更好的泛化能力。在最近的工作中,该方法被用来帮助训练深度神经网络完成各种任务,如图像分类、语音识别、实体消歧和机器翻译。
最接近我们的工作是使用目标语言对神经网络进行预训练,然后在有人监督的情况下对其进行微调。然而,尽管预训练阶段有助于捕获一些语言信息,但它们对LSTM模型的使用将其可预测性限制在较短的范围内。与此相反,我们选择的 Transformer网络允许我们捕获更长范围的语言结构,这在我们的实验中得到了证明。此外,我们还展示了我们的模型在更广泛的任务上的有效性,包括自然语言推理、释义和故事完成。其他方法使用预先训练语言或机器翻译模型的隐藏表示作为辅助特征,同时训练目标模型的监督模型。这涉及到每个目标分离的任务的大量新参数,而在传输期间,我们需要对模型体系结构进行最小的更改。

辅助训练目标

增加辅助无监督训练目标是半监督学习的另一种形式。Collobert和Weston的早期工作使用了各种各样的辅助NLP任务,如词性标注、分块、命名实体识别和语言模型化来改进语义角色标注,在目标任务目标上添加一个辅助语言模型,并展示了序列标记任务的性能增益。我们的实验也使用一个辅助的目标,但是正如我们所展示的,无监督的预训练已经学习了与目标任务相关的几个语言方面。

框架

我们的训练程序分为两个阶段。第一阶段是在一个大的文本语料库上学习一个高容量的语言模型。接下来是一个微调阶段,在这个阶段中,我们将模型调整为带有标记数据的判别任务。

无监督预训练

给定一个无监督语料库的标记S= {u1,…,un},我们使用一个标准的语言模型来最大化以下可能性
(1)
其中,k是上下文窗口的大小,P为使用参数Θ的神经网络建模的条件概率型。这些参数是用随机梯度下降训练的。
在我们的实验中,我们使用多层Transformer解码器[34]作为语言模型,它是Transformer的变体,此模型对输入上下文标记应用多头自注意操作,然后是位置前馈层,以生成分布在目标标记上的输出:
在这里插入图片描述
其中U是令牌的上下文向量,n是层数,We是令牌嵌入矩阵,Wp是位置嵌入矩阵。
在这里插入图片描述

监督预训练

在用公式1中的目标模型训练后,我们将参数调整到有监督的目标任务。我们假设一个带标签的数据集C,其中每个实例由一系列输入标记x1,…,xm和标签y组成。输入通过我们预先训练的模型来获得最终Transformer组的激活hml,然后将其输入一个参数为Wy的加线性输出层(added linear output layer)来预测y:
在这里插入图片描述
最大化以下目标:
在这里插入图片描述
我们还发现,包括语言建模作为辅助目标的微调有益于:

  • 改进监督模式的泛化
  • 加速收敛
    具体来说,我们优化了以下目标(权重λ):
    在这里插入图片描述
    总的来说,在微调期间,我们只需要Wy和定界符(delimiter tokens)的嵌入。
    在这里插入图片描述
    左:这项工作中使用的Transformer 结构和训练目标。
    右:用于对不同任务进行微调的输入转换。
    我们将所有结构化输入转换为令牌序列,然后由我们的预训练模型进行处理,之后是 linear+softmax layer。
特定任务的输入转换

对于一些任务,如文本分类,我们可以直接微调我们的模型,如上所述。
某些其他任务,如问答或文本蕴涵,具有结构化输入,如顺序句子对或文档、问题和答案的三元组当然也可以。由于我们的预训练模型是在连续的文本序列上训练的,因此我们需要进行一些修改才能将其应用于这些任务。
先前的工作提出了基于转换表示的任务特定的学习体系结构。
这种方法重新引入了大量特定于任务的定制,并且没有对这些额外的体系结构组件使用迁移学习。相反,我们使用遍历样式(traversal-style)方法,将结构化输入转换为我们的预训练模型可以处理的有序序列即将结构化输入转换为一个有序序列。这些输入转换允许我们避免跨任务对架构进行大量更改。我们在下面简要描述了这些输入转换,图1提供了一个直观的说明。所有转换都包括添加随机初始化的开始和结束标记(〈s〉,〈e〉)。

文字蕴涵(Textual entailment)

对于蕴涵任务,我们将 premise p和 hypothesis h与分隔符token($)连接起来。

相似性

对于相似性任务,两个被比较的句子没有内在的顺序。为了反映这一点,我们修改输入序列以包含两个可能的句子顺序(中间有分隔符)并分别处理产生两个序列表示hml,在被馈入线性输出层之前按元素添加。

问答与常识推理

对于这些任务,我们会得到一个context document z, a question q ,和一组可能的答案{ak}。我们将文档上下文和问题与每个可能的答案连接起来,在两者之间添加一个分隔符标记以获取[z;q;$;ak]。这些序列中的每一个都是用我们的模型独立处理的,然后通过一个softmax对其进行规范化,从而在可能的答案上产生一个输出分布。

2. Language Models are Unsupervised Multitask Learners(GPT-2)

摘要

自然语言处理任务如问答,机器翻译,阅读理解,阅读理解和总结是典型的在特定任务的数据集上进行的监督学习。我们证明了当语言模型在由数以百万计的网页组成名为WebText的新数据集上进行训练时,可以无需监督学习这些任务。

在文档+问题的条件下,由语言模型生成的回答在CoQA数据集上达到了55的F1—在没有使用127000多个训练示例的情况下匹配或超过了四分之三的基线系统的性能。

语言模型的容量对于zero-shot task transfer的成功和增加它对 log-linear fashion across task任务的性能是必不可少的。

GPT-2是一个1.5B参数的Transformer ,zero-shot的条件下在7/8个语言模型的测试数据集上做到了state of the art,但对WebText依旧欠拟合。

启示:建立从自然发生的演示(naturally occurring demonstrations)中学习解决任务的语言处理系统。

介绍

机器学习系统在有大数据集高容量模型的情况下在特定任务上表现良好,但脆弱且对数据分布十分敏感。我们转向更通用的系统,无需手动打标签(无监督)。

方法

由于监督目标与无监督目标相同,但仅在序列的子集上进行评估,无监督目标的全局最小值也就是监督目标的全局最小值(忽略关于密度估计的一个原则性训练目标 the concerns with density estimationas a principled training objective discussed in (Sutskeveret al., 2015) are side stepped.)。

虽然对话是一种很好的文本数据,但是它的限制比较大,我们的方法鼓励建立尽可能大且多样的数据集,以便在尽可能多的领域和上下文中收集任务的自然语言演示(demonstrations )。(简单说,什么类型的文本都可以达到学习语义信息的效果。)

输入表示

通用语言模型(LM)应该能够计算(并生成)任何字符串的概率。
当前大规模LMs包括预处理步骤,如lower-casing, tokenization, 和out-of-vocabulary tokens,这些步骤限制了可建模字符串的空间。当前字节级LMs在大型数据集(如十亿字基准)上与字级LMs不具有竞争性。(两者在表现上相差不大)

字节对编码(BPE)是字符和单词级语言建模之间的一个折中(practical middle ground),它有效地在频繁符号序列的单词级输入和不频繁符号序列的字符级输入之间进行插值。尽管名称不同,reference BPE实现通常操作Unicode代码点,而不是字节序列。这些实现需要包含Unicode符号的全部空间,以便对所有Unicode字符串建模。这将导致在添加任何multi-symbol tokens之前,基本词汇表超过130000。与BPE通常使用的32000到64000个token vocabularies相比,这是一个令人望而却步的大问题。相反,字节级版本的BPE只需要256大小的基本词汇表。然而,直接将BPE应用于字节序列会导致次优合并(sub-optimal merges),因为BPE使用贪心的基于频率的启发式(greedy frequency based heuristic)算法来构建令牌词汇表。我们观察到BPE包括许多常见词的版本,比如dog,因为它们出现在许多变体中比如dog. dog!dog?这将导致有限词汇槽和模型容量(limitedvocabulary slots and model capacity)的次优分配。为了避免这种情况,我们防止BPE为任意字节序列跨字符类别合并。我们为空格添加了一个例外,这显著地提高了压缩效率,同时在多个vocab tokens之间添加了最小的单词碎片。

这种输入表示允许我们结合词级LMs的经验优势和字节级方法的通用性。因为我们的方法可以为任何Unicode字符串分配一个概率,这允许我们在任何数据集上评估LMs,而不管预处理、标记或vocab大小如何。

模型

我们的LMs使用基于Transformer 的架构。该模型在很大程度上遵循了OpenAI GPT模型的细节的基础上做了一定改动。

  • Layer normalization被移到了每个子块的输入,类似于pre-activation residual networkk (He et al., 2016)。并在最后一个自我注意块之后添加额外的layer normalization。
  • 修改初始化方法,用模型深度计算剩余路径上的累积量(accountsfor the accumulation on the residual path with model depthis used)。我们将初始化时剩余层的权重按1/√n的系数进行缩放,其中是剩余层的数量。
  • 词汇量扩大到50257。我们还可以将上下文大小从512增加到1024个tokens ,并使用更大的batch size 512。

实验

语言建模数据集上的结果通常以平均负对数概率规范预测单元(the average negative log probability per canonical prediction unit)比例缩放或指数化(scaled or exponentiated)的量,通常是一个字符、一个字节或一个单词。我们根据一个WebText LM计算一个数据集的对数概率(log-probability),然后除以规范单元( canonical units)的数量,来评估相同的数量。对于这些数据集中的许多,WebText LMs将在分布之外进行显著的测试,必须积极地预测标准化的文本(standardized text)、标记化工件(tokenization artifacts),如断开的标点和收缩(disconnected punctuationand contractions)、无序的句子,甚至是UNK,而这在WebText中极少-在400亿字节内仅发生26次。由于这些去标记器(de-tokenizers)是可逆的,我们仍然可以计算一个数据集的对数概率(log probability ),它们可以被看作是一种简单的域适应形式(domain adaptation)。我们观察到带有去标记器的GPT-2有着2.5到5的perplexity 的增益。

Children’s Book Test(CBT)

儿童书籍测试(CBT)(Hill等人,2015)旨在研究LMs在不同类别词汇(命名实体、名词、动词和介词)上的表现。CBT不是报告perplexity而是报告自动构造完形填空测试的accuracy ,其中任务是预测一个省略单词的10个可能选项中的哪一个是正确的。
在这里插入图片描述

LAMBADA

LAMBADA数据集(Paperno等人,2016年)测试了系统在文本中建立长期依赖关系模型的能力。任务是预测句子的最后一个单词,人类至少需要50个上下文标记才能成功预测。

GPT-2将the state of the art从99.8(Graves et al,2016)提升到8.6的perplexity ,并使LMs在该测试中的准确性从19%(DeHghani等人,2018)提高到52.66%。对GPT-2错误的调查表明,大多数预测是句子的有效延续,但不是预设的最后一个单词。这表明LM没有使用额外的有用约束,即单词必须是句子的结尾。添加一个停止字过滤器(stop-word filter)作为一个近似值,进一步将精度提高到63.24%,提高了本任务的总体状态4%。

Winograd Schema Challenge

Winograd Schema challenge(Levesque等人,2012)的构建是为了通过测量系统解决文本中歧义的能力来衡量系统执行常识推理的能力。
在这里插入图片描述

Reading Comprehension

会话问答数据集(CoQA)Reddy等人。(2018)由来自7个不同领域问答者之间的自然语言对话的一系列文件组成。CoQA测试阅读理解能力和模型回答依赖于历史会话的能力。
似乎表现不好,作者甩锅给了无监督。

Summarization

经常关注文章的最新内容,或者把具体细节搞混,比如有多少辆车卷入车祸,或者帽子或衬衫上有什么标志。接近基线水平,仅略优于从文章中选择3个随机句子。

Translation

在WMT-14英语-法语测试集上,GPT-2获得了5的BLEU,这比以前的无监督词翻译中的双语词典逐字替换略差(Conneau 等人., 2017b)。在WMT-14法语-英语测试集上,GPT-2能够利用其非常强大的英语语言模型来显著提高性能,达到11.5 BLEU。这优于(Artetxe et al.,2017)和(Lampleet al.,2017)中的几个无监督机器翻译基线,但仍比当前最佳无监督机器翻译方法(Artetxe et al.,2019)的33.5 BLEU差得多。作者对此也感到十分诧异,因为语料库中的噪音并不多(英文数据中的法语内容不到500分之一)。

Question Answering

测试语言模型中包含哪些信息的一个潜在方法是评估是不是经常产生问题的仿真陈述式的回答(factoid-style,不真实但可以使人信以为真)。
GPT-2在回答常用于阅读理解的数据集如SQUAD时回答的正确率为4.1%。作为比较,最小的模型不超过一个非常简单的基线的1.0%的精确度,该基线为每种问题类型(谁、什么、在哪里等)返回最常见的答案。GPT-2能正确回答5.3倍以上的问题,表明模型容量是导致神经网络系统在这类任务中表现不佳的主要因素。GPT-2分配给其生成的应答器的概率经过了很好的校准,GPT-2对其最有信心的1%的问题的准确率为63.1%。GPT-2的性能仍然比开放域问答系统的30%到50%的范围差很多,这些系统混合了信息检索和抽取文档问答。(Alberti 等人., 2019).

Generalization vs Memorization

计算机视觉领域的最新研究表明,常见的图像数据集包含大量的近似重复的图像。例如,CIFAR-10在训练图像和测试图像之间有3.3%的重叠(Barz&Denzler,2019)。这导致了对机器学习系统泛化性能的过度报道。随着数据集大小的增加,这个问题变得越来越可能,这表明类似的现象可能发生在WebText上,因此,分析有多少测试数据也出现在训练数据中是很重要的。
为了研究这个问题,我们创建了包含8-grams of WebText training set token的Bloom筛选器。
我们的方法优化了召回,虽然手动检查重叠显示了许多常见的短语,但由于重复的数据,还有许多更长的匹配。
令人担忧的是,这样的问题普遍存在。但从结果上讲,排除这种干扰所带来的的准确率下降并没有太严重的影响(在排除任何重叠的所有实例时重新计算度量结果perplexity从8.6 到了 8.7,并将精度从63.2%降低到62.9%。)

目前,我们建议使用基于n-gram重叠的重复数据消除作为一个重要的验证步骤,并在为新的NLP数据集创建训练和测试拆分时进行健全性检查。

判断WebText LMs 的表现是否归因于记忆的另一种可能的方法是在他们自己的留出集(held-out set)上检查他们的表现。WebText的训练集和测试集的性能相似,并且随着模型大小的增加而共同提高。这表明即使是GPT-2在很多方面仍然对WebText欠拟合。

近期工作

这项工作的很大一部分衡量了在较大数据集上训练的较大语言模型的性能。
我们计划对诸如 decaNLP 和GLUE等基准进行微调,尤其是因为目前还不清楚GPT-2的额外的训练数据和能力是否足以克服BERT所描述的单向表示的低效性。

结论

当一个大型语言模型在一个足够大和多样化的数据集上训练时,它能够在多个领域和数据集上表现良好。在zero-shot setting下模型能够执行的任务多样性表明,高容量模型被训练以最大限度地增加足够多的文本语料库的可能性,开始学习如何执行惊人数量的任务,而不需要明确的监督。

3. DIALOGPT : Large-Scale Generative Pre-trainingfor Conversational Response Generation

摘要

DIALOGPT是在2005~2017的Reddit评论链中提取的147M个对话上进行训练的,扩展了Hugging Face PyTorch Transformer ,使其在单轮对话的自动评估和人工评估方面都达到了接近人类表现的性能。生成了比baseline systems更高相关性、丰富度和上下文一致性的回复。

介绍

OpenAI的GPT-2表明:在非常大的数据集上训练的Transformer 模型可以捕获文本数据中的长期依赖关系,并生成流畅、词汇多样和内容丰富的文本。这样的模型有能力捕捉具有细粒度的文本数据,并产生高分辨率的输出,从而更好地模仿人类编写的真实文本。

自然语言回复生成是文本生成的一个子类别,目标都是生成与提示句相关的更自然的文本。
但是,模拟对话的独特挑战在于,人类对话包含了两个参与者可能相互竞争的目标(encapsulates the possibly competing goals of two participants),本质上更多样化。因此,与其他文本生成任务(如NMT神经网络机器翻译,文本总结等)相比,一对多问题(one-to-many problem)更大。而一般来说,人类的对话也比较非正式、嘈杂,而且,当以文本聊天的形式出现时,往往包含非正式的缩写或句法/词汇错误。

大多数开放域回复生成系统都存在内容或样式不一致。缺乏长期的语境信息,以及回复过于平淡(安全回复)的问题。虽然这些问题可以通过专门为提高信息内容而设计的建模策略来缓解,但基于Transformer 的结构,如GPT-2,使用多层自注意力机制,采用全连接对跨越注意力(allow fully-connected cross-attention to the full context)进行高效计算来关注整个上下文,似乎是探索更一般解决方案的自然选择。

Transformer 模型可以更好地保存长期依赖信息,从而提高内容的一致性。同时也因为深层结构有着更大的模型容量,可以比RNN模型更好地利用大规模数据集。

与GPT-2的对比

  • 相同点:DIALOGPT也是一个自回归语言模型,采用多层Transformer 作为模型体系结构…
  • 不同点:是对在从Reddit评论链中提取的大规模对话对/会话上进行训练的。作者推测这样可以更好地获取P(Target,Source)在具有更细粒度的对话流中的联合分布(This should enable DIALOGPT to capturethe joint distribution of P(Target,Source) in conversational flow with finer granularity)。

数据集

Reddit评论可以自然地扩展为树结构的回复链,因为回复一个线程的线程形成了后续线程的根节点。我们将每条路径从根节点提取到叶节点,作为包含多轮对话的训练实例。
对以下情形进行过滤:

  • 对话中存在URL
  • 含有三个以上的单词重复
  • 如果回复中不包含至少一个 top-50最频繁使用的英语单词(eg., “the”, “of”, “a”),这代表着可能不是一个英文句子
  • 回复包含特殊标记,如“[”或“]”,因为这可能是标记语言。
  • 提问或回复超过200个单词
  • 存在黑名单中的敏感词

方法

模型结构

在采用通用Transformer 结构的GPT-2架构上利用堆叠的masked多头自注意层来训练大量的网络文本数据。

Tricks

  • layer normalization
  • 根据我们改进的模型深度计算的初始化方案(a initialization scheme that accounts
    for model depth that we modified)
  • 字节对编码(byte pairencodings)

将多轮对话转链接为长文本形式
在这里插入图片描述
在这里插入图片描述

互信息最大化

计算maximum mutual information (MMI) 来应对生成的回复信息量低的问题。
采用一个预训练的反向模型来从给定的答句预测出问句P(Source|target)。先使用top-K采样来生成一系列假设,然后再利用**P(Source|Hypothesis)**来对假设进行重排,以此来惩罚安全回复。
这里我的理解是:对于不同的问题,可能可以进行相同的安全回复。比如

我们一起去看电影好不好?
我们一起去爬山好不好?
......

等等类似的句子,完全可以用简单的 好的。 这个回复来对应,这时给出这个回复的概率就会很高。
但是如果我们用 P(Source|Hypothesis) 来重排的话就会发现

好呀,我最喜欢看电影了!

这种回复的情况下对应 我们一起去看电影好不好? 的可能性就会高的多,这样回复就会更倾向于可能包含对应于问句更多的信息的假设。

关于强化学习的尝试

简单讲:容易陷入局部最优,表现为答句简单重复问句。
在这里插入图片描述

训练加速
  • 懒加载数据降低读取频率。
  • 采用分离的异步数据进程来扩展训练。(We also leverage separate asynchronous data processes to scale the training. )
  • 进一步采用了一种动态批处理策略,将长度相似的对话分组到同一批中,从而提高了训练吞吐量。
DSTC-7 Dialogue Generation Challenge

DSTC (Dialog System Technology Challenges) 一个端到端的对话建模任务,目标是通过注入基于外部知识的信息来生成会话回答,从而超越闲聊。
(the goal is to generate conversation responses that go beyond chitchat by injecting information that is grounded in external knowledge. )此任务与通常认为的目标导向、任务导向或完成任务(goal-oriented, task-oriented, or task-completion)的对话不同,因为没有特定或预定义的目标。相反,它的目标是人与人之间的相互作用,在这种相互作用中,潜在的目标通常是不明确或事先未知的。

关于自动测试分数高于人类的解释

在这里插入图片描述
如:假设R1-R4是可能的人类问答,R1-R3是我们用来做测试的“真实回答”,那么在语义空间里,一个训练好的模型生成的回答Rg,将很可能靠近所有可能回复的几何中心,而这个几何中心(Rg)到参考点(R3)的距离可能小于R4到R3的距离。这就使得在自动测试分数上,模型表现超越了人类。

另外,人类评审甚至有时也给了MMI高于人类回复的分数,因为人类回复可能更加的不稳定和特殊化,或者带有评审们不熟悉的网络用语。

局限与挑战

主要还是隐性的敏感语句,包括历史,性别等方面的冒犯。

结论

发布了开放域的预训练模型DIALOGPT。

4.The Illustrated GPT-2 (Visualizing Transformer Language Models)

本来想个放个已有的翻译链接在这儿,但Jay Alammar大佬的博客实在是太棒了。忍不住还是仔细看一遍

https://jalammar.github.io/illustrated-gpt2/

翻译前再日常膜一波大佬!

今年,我们看到了机器学习令人眼花缭乱的应用。OpenAI GPT-2展示了令人印象深刻的写作能力,它的连贯性和激情超过了我们预期的当前语言模型所能产生的结果。GPT-2并不是一个特别新颖的体系结构,它的体系结构与只有解码器的Transformer非常相似。然而,GPT2是一个非常大的、基于Transformer的语言模型,它是在一个巨大的数据集上训练的。在本文中,我们将研究使模型能够产生其结果的体系结构。我们将深入它的自注意层。然后我们将研究语言建模之外的只有解码器部分的Transformer的应用。
我在这里的目标也是为了补充我之前的文章,The Illustrated Transformer,用更多的图像来解释Transformer的内部工作原理,以及它们自最初的论文以来是如何进化的。我的希望是,随着内部工作机制的不断发展,这种可视化语言有望使以后基于Transformer的模型更容易解释。

  • Part 1: GPT2和语言模型
    • 什么是语言模型
    • 语言模型Transformers
    • 与BERT的一个区别
    • Transformer Block 的一个进化
    • 脑外科速成班: 透视GPT-2
    • 更深层的透视
    • End of part #1: The GPT-2, Ladies and Gentlemen
  • Part 2: Self-Attention的图示
    • Self-Attention (without masking)
    • 1- Create Query, Key, and Value Vectors
    • 2- Score
    • 3- Sum
    • Masked Self-Attention 的图示
    • GPT-2 Masked Self-Attention
    • 超越 Language modeling
    • 你已经成功了!
  • Part 3: 超越 Language Modeling
    • 机器翻译
    • 总结
    • 迁移学习
    • 音乐生成

第一部分:GPT2与语言建模

什么是语言模型

在图示的Word2vec中,我们已经了解了语言模型是什么——基本上是一个机器学习模型,它能够查看句子的一部分并预测下一个单词。最著名的语言模型是智能手机键盘,根据你当前输入的内容提示下一个单词。
在这里插入图片描述
从这个意义上讲,我们可以说GPT-2基本上是键盘应用程序的下一个单词预测功能,但它比你的手机要大得多,也更复杂。GPT-2是在一个巨大的40GB数据集WebText上训练的,这是OpenAI的研究人员从互联网上爬出来作为研究工作的一部分。就存储容量而言,我使用的键盘应用:SwiftKey,占用了78MBs的空间。训练过的GPT-2的最小变体占用了500MBs的存储空间来存储它的所有参数。最大的GPT-2变型是13倍的大小,因此它可以占用超过6.5GBs的存储空间。
在这里插入图片描述
用GPT-2进行实验的一个很好的方法是使用AllenAI GPT-2浏览器。它使用GPT-2来显示下一个单词的十个可能预测(以及它们的概率分数)。你可以选择一个单词,然后看下一个预测列表,继续写这篇文章。

语言模型Transformers

正如我们在所示的Transformer中看到的,原始Transformer模型由一个编码器和解码器组成——每个都是我们可以称之为Transformer块的堆。这种架构是合适的,因为该模型解决了机器翻译——过去编码器-解码器架构成功的一个问题。
在这里插入图片描述
随后的许多研究工作中,该体系结构去掉了编码器或解码器,只使用了一堆Transformer块——将它们尽可能高的堆叠起来,为它们提供大量的训练文本,向他们投入大量的算力(数十万美元用于训练其中一些语言模型,在AlphaStar中可能是数百万美元)。
在这里插入图片描述
我们能把这些块堆多高?事实证明,这是不同GPT2型号之间的主要区别因素之一:
在这里插入图片描述

与BERT的一个区别

First Law of Robotics
A robot may not injure a human being or, through inaction, allow a human being to come to harm.

GPT-2是使用Transformer解码器块构建的。另一方面,BERT使用Transformer编码器块。我们将在下面的一节中讨论这种差异。但两者之间的一个关键区别是,GPT2和传统的语言模型一样,一次输出一个token。例如,让我们提示一个训练有素的GPT-2背诵机器人学第一定律:
在这里插入图片描述
这些模型的实际工作方式是在生成每个令牌之后,将该令牌添加到输入序列中。新的序列成为模型下一步的输入。这就是所谓的“自回归”。这是使RNNs不合理的有效的想法之一(就是夸RNN有效!)。
在这里插入图片描述
GPT2和一些后来的模型,如TransformerXL和XLNet,在本质上是自回归的。BERT不是。这是一种交易(trade off)。在失去自回归的过程中,BERT获得了将单词两边的上下文结合起来以获得更好的结果的能力。XLNet带来了自回归,同时找到了另一种方法来结合两边的上下文。

Transformer Block的一个进化

最初的Transformer论文介绍了两种类型的Transformer块:

The Encoder Block

在这里插入图片描述
来自原始Transformer的编码器块可以接受输入,直到达到某个最大序列长度(例如512个token)。如果一个输入序列短于这个极限,我们就可以填充序列的其余部分。

The Decoder Block

其次,解码器块与编码器块有一个很小的架构变化,这是一个允许它关注编码器特定片段的层:
在这里插入图片描述
在这里,自我注意层的一个关键区别是,它屏蔽了未来的token——不是像BERT那样将单词改为[mask],而是干扰了自我注意计算,屏蔽了计算位置右侧的令牌的信息。
例如,如果我们要突出显示位置4的路径,我们可以看到它只允许处理当前和以前的标记:
在这里插入图片描述
重要的是,自注意(BERT使用的)和遮蔽的自注意(GPT-2使用的)之间的区别是清楚的。正常的自注意块允许一个位置在其右侧的标记处达到峰值。遮蔽的自注意阻止了这种情况的发生:
在这里插入图片描述

仅解码器块

在最初的论文之后,“通过总结长序列生成Wikipedia”提出了另一种能够进行语言建模的Transformer块安排方式。这个模型丢弃了Transformer编码器。因此,我们将模型称为“Transformer解码器”。这种早期基于Transformer的语言模型由六个Transformer解码器块组成:
在这里插入图片描述
解码器块是相同的。我已经展开了第一个,所以你可以看到它的自注意层是遮蔽变体。请注意,该模型现在可以在某个段中处理多达4000个token,这是对原始Transformer中512个令牌的一次大规模升级。
这些块与原始解码器块非常相似,只是它们去掉了第二个自注意层。在字符级语言建模中研究了一种类似的体系结构,通过更深入的自注意来创建一个一次预测一个字母/字符的语言模型。
OpenAI GPT-2模型只使用这些解码器块。

脑外科速成班: 透视GPT-2

Look inside and you will see, The words are cutting deep inside my brain. Thunder burning, quickly burning, Knife of words is driving me insane, insane yeah. ~Budgie

让我们把经过训练的GPT-2放在手术台上,看看它是如何工作的。
在这里插入图片描述
GPT-2可以处理1024个令牌。每个token沿着自己的路径流过所有解码器块。
运行经过训练的GPT-2最简单的方法是让它自己漫游(ramble)(技术上称为生成无条件样本)——或者,我们可以给它一个提示,让它谈论某个主题(也就是生成交互式条件样本)。在漫无边际的情况下,我们可以简单地将开始标记交给它并让它开始生成单词(训练的模型使用<| endoftext |>作为它的开始标记。我们改称它为< s >。(真的,你没看错我也没翻译错,endoftext作为start token)
在这里插入图片描述
模型只有一个输入token,因此该路径将是唯一活动的。token通过所有层依次处理,然后沿着该路径生成一个向量。这个向量可以根据模型的词汇进行评分(模型知道的所有单词,在GPT-2的情况下是50000个单词)。在这种情况下,我们选择了概率最高的token“the”。但我们当然可以把事情搞混——你知道如果你一直点击键盘应用程序中的建议单词,它有时会陷入重复循环,唯一的出路就是你点击第二个或第三个建议单词。同样的情况也会发生在这里。GPT-2有一个名为top-k的参数,我们可以使用该参数让模型考虑除top-k=1时(top-k=1时的情况)之外的采样词。
在下一步中,我们将第一步的输出添加到输入序列中,并让模型进行下一步预测:
在这里插入图片描述
请注意,第二条路径是此计算中唯一处于活动状态的路径。GPT-2的每一层都保留了自己对第一个token的解释,并将在处理第二个token时使用它(我们将在下面关于自我关注的部分中对此进行更详细的讨论)。GPT-2不会根据第二个token重新解释第一个token。

更深入的观察

Input Encoding

让我们看看更多的细节来更深入地了解这个模型。让我们从输入开始。与我们之前讨论过的其他NLP模型一样,该模型在其嵌入矩阵中的嵌入中查找输入字,这是我们作为训练模型的一部分得到的组件之一。
在这里插入图片描述
每一行都是一个单词嵌入:表示一个单词并捕获其某些含义的数字列表。该列表的大小在不同的GPT2模型大小中是不同的。最小的模型使用768个字/token的嵌入大小。
因此,在开始时,我们查找start token< s >在嵌入矩阵中的嵌入。在将其交给模型中的第一个块之前,我们需要将其与代表transformer块中单词顺序位置的编码信号进行合并。训练模型的一部分是一个包含了输入中1024个位置的每个位置编码向量的矩阵。
在这里插入图片描述
至此,我们已经介绍了在将输入字传递给第一个transformer块之前对其如何进行处理。我们还知道构成训练好的GPT-2的两个权重矩阵。
在这里插入图片描述
向第一个transformer块发送一个字意味着查找它的嵌入并添加对应位置的位置编码向量。

一次攀登Transformer stack的旅程

第一个块现在可以通过先通过自注意过程,然后通过它的神经网络层来处理token。一旦第一个transformer块处理了这个token,它就将其结果向量发送到堆栈上,由下一个块处理。每个块的处理过程都是相同的,但是每个块在自我注意和神经网络子层中都有自己的权重。
在这里插入图片描述

回顾Self-Attention

语言很大程度上依赖于语境。举个例子,看看第二定律

Second Law of Robotics
A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.

我强调了句子中三个与其他词相关的地方。要理解或处理这些词,就必须结合它们所指的上下文。当一个模型处理这个句子时,它必须能够知道:

  • it指的是robot
  • such orders指的是法律的前一部分,即人类对法律的命令
  • The First Law指的是整个第一定律
    这就是自注意的作用。在处理某个单词(通过神经网络传递)之前,它融合(bake)了模型对解释某个单词的上下文相关联单词的理解。(It bakes in the model’s understanding of relevant and associated words that explain the context of a certain word before processing that word (passing it through a neural network).)通过为片段中每个单词的相关程度分配分数,并将它们的向量表示形式相加来做到这一点。
    举个例子,顶层的这个自注意层在处理“it”这个词时关注的是“a robot”。它将传递给它的神经网络的向量是三个词的向量乘以它们的分数的总和。
    在这里插入图片描述
Self-Attention过程

在段中的每个token的路径上进行自注意计算。主要部分是三个向量:

  • 查询:查询是当前单词的表示,用于对所有其他单词(使用它们的键)进行评分。我们只关心当前正在处理的token的查询。
  • 键:键向量就像是段中所有单词的标签。它们是我们在搜索相关单词时所进行匹配的。
  • 值:值向量是实际的单词表示,一旦我们计算出每个单词的相关性,这些是我们加起来表示当前单词的值。(once we’ve scored how relevant each word is, these are the values we add up to represent the current word.)
    在这里插入图片描述
    一个粗略的类比是把它想象成在文件柜中搜索。这个查询就像一个带着你正在研究的主题的便利贴。键就像橱柜里文件夹的标签。当你用便利贴匹配标签时,我们取出那个文件夹的内容,这些内容就是值向量。只是你不仅要查找某一个值,而是要查找来自混合文件夹的混合值。
    用查询向量乘以每个键向量会为每个文件夹生成一个分数(技术上是:点积后进行softmax)。
    在这里插入图片描述
    我们用每个值乘以它的分数,然后总结出自注意的结果。
    在这里插入图片描述
    这个加权值向量的混合结果是一个向量将50%的注意力放在单词robot上,30%的注意力放在单词a上,19%的注意力放在单词it上。稍后,我们将深入自注意。但首先,让我们继续朝着模型输出的方向我们的旅程。
模型输出

当模型的顶部块产生它的输出向量(它本身的自注意值经过它本身神经网络后的结果)时,模型将这个向量乘以嵌入矩阵。
在这里插入图片描述
回忆一下,嵌入矩阵中的每一行对应于一个单词在模型词汇表中的嵌入。这个乘法的结果被解释为模型词汇表中每个单词的得分。
在这里插入图片描述
我们可以简单地选择得分最高的标记(top k = 1),但是如果模型也考虑其他单词,则会得到更好的结果。因此,更好的策略是从整个列表中抽取一个单词,使用得分作为选择该单词的概率(因此得分高的单词被选中的概率更高)。折中的做法是将top k设置为40,并让模型考虑得分最高的40个单词。
在这里插入图片描述
这样,模型就完成了一次迭代,输出一个单词。模型继续迭代,直到生成整个上下文(1024个标记),或者直到产生一个 end-of-sequence token。

End of part #1: The GPT-2, Ladies and Gentlemen

这就GPT2的工作原理的介绍。如果你想知道“自注意”这一层到底发生了什么,那么下面的奖励部分就是为你准备的。我创建它是为了引入更多的可视化语言来描述自注意,以便更容易地查看和描述后面的transformer模型(马上就到你了,TransformerXL和XLNet)。
我想在这篇文章中指出一些过度简化的地方:

  • 我交替使用 “words”和 “tokens”。但实际上,GPT2使用字节对编码(Byte Pair Encoding)在其词汇表中创建标记。这意味着这些token通常是word的一部分。
  • 我们展示的示例以推理/评估模式运行GPT2。这就是为什么它一次只能处理一个单词。在训练时,模型将针对较长的文本序列进行训练,并同时处理多个token。
  • 同样在训练时,与示例使用的batch size相比,模型将处理更大的batch size(512)。
  • 为了更好地管理图像中的空间,我可以自由地旋转/变换矢量。在实践中,必须更加精确。
  • Transformers使用了很多层归一化,这是非常重要的。我们已经在Transformers的图片中提到了其中的一些,但是在这篇文章中我们更关注于自注意。
  • 有时我需要显示更多的方框来表示向量。我用“zooming in”来表示。例如

在这里插入图片描述

Part 2: Self-Attention的图示

在这篇文章的早些时候,我们用这张图片来展示在处理it这个词的图层中应用的自注意
在这里插入图片描述
在本节中,我们将详细讨论如何实现这一点。请注意,我们将以一种试图理解单个单词所发生的事情的方式来看待它。这就是为什么我们要展示许多单个向量。实际的实现是通过将巨型矩阵相乘来实现的。但我想重点讲一下在单词层面上的直观感受。

Self-Attention (未遮蔽)

让我们开始看看原始的自注意,因为它是计算在一个编码器块。让我们看看一个简单transformer块,它一次只能处理四个token。
自注意主要通过三个步骤来实现:

  • 为每个路径创建查询、键和值向量。
  • 对于每个输入标记,使用其查询向量对所有其他关键向量进行评分
  • 将数值向量与相关分数相乘后相加。
    在这里插入图片描述

1-创建查询、键和值向量

让我们关注第一个路径。我们用它的查询向量与所有的键向量进行比较。这将为每个键生成一个分数。自注意的第一步是计算每个token路径的三个向量(现在让我们忽略注意力头)
在这里插入图片描述

2 -分数

现在我们有了向量,我们在步骤2只使用查询和键向量。由于我们重新关注第一个token,所以我们将它的查询与所有其他键向量相乘,从而为四个token中的每一个都计算分数。
在这里插入图片描述

3-总和

我们现在可以用值向量乘以分数。一个高分数的值将在我们把它们加起来之后构成结果向量的很大一部分。
在这里插入图片描述
分数越低,我们显示的值向量就越透明。这是为了说明乘以一个小的数是如何稀释向量的值的。
如果对每个路径执行相同的操作,则最终得到一个向量,该向量表示包含该tokrn的对应上下文的每个token。然后将这些信息提交给transformer块中的下一个子层(前馈神经网络)。
在这里插入图片描述

图示Masked Self-Attention

既然我们已经了解了transformer的自注意步骤,让我们继续来看看掩蔽的自注意。除了第二步,掩蔽的自注意和自注意是一样的。假设模型只有两个token作为输入,我们将观察第二个token。
在本例中,最后两个token被屏蔽。所以这个模型干扰了评分步骤。它基本上总是将未来的token记为0,这样模型就不能在未来的单词上达到峰值(不会在之后的单词上取到概率最大值)。
在这里插入图片描述
这种掩蔽通常被实现为一个矩阵,称为注意掩蔽(attention mask)。想象一个由四个单词组成的序列(例如,“robot must obey orders”)。在语言建模场景中,这个序列分为四个步骤,每个单词一个(目前假设每个单词都是一个token)。由于这些模型是成批工作的,我们可以假设这个玩具模型的批大小为4,它将把整个序列(包括它的四个步骤)作为一个批处理。
在这里插入图片描述
在矩阵形式中,我们通过将查询矩阵乘以键矩阵来计算得分。让我们将其可视化如下,除了单词之外,在该单元格中将有与该单词关联的查询(或键)向量:
在这里插入图片描述
在乘法之后,我们把在注意力矩阵上放一个三角形的蒙板(we slap on our attention mask triangle)。它将我们要屏蔽的cell设置为 − ∞ -∞ 或一个非常大的负数(例如GPT2中的-1亿)
在这里插入图片描述
然后,在每一行上应用softmax产生我们用于自注意的实际分数
在这里插入图片描述
这个分数表的意思如下

  • 当模型处理数据集(第1行)中的第一个示例时,其中只包含一个单词(robot),它的100%注意力将集中在这个单词上。
  • 当模型处理数据集(第2行)中包含单词(robot must)的第二个示例时,当它处理单词must时,48%的注意力将放在robot上,52%的注意力将放在must上。
  • 等等…

GPT-2 Masked Self-Attention

让我们进入更多的关于GPT-2 Masked Self-Attention的细节。

评估时间:一次处理一个token

我们可以让GPT-2完全按照遮蔽自注意(Masked Self-Attention)的方式工作。但是在评估过程中,当我们的模型在每次迭代后只添加一个新词时,沿着已经处理过的token的早期路径重新计算自注意将是低效的。
在本例中,我们处理第一个token(暂时忽略< s >)。
在这里插入图片描述
GPT-2保留了a token的键和值向量。每个self-attention层都持有该token的相应键和值向量。
在这里插入图片描述
现在在下一次迭代中,当模型处理单词robot时,它不需要为a token生成查询、密钥和值对。它只是重复使用从第一次迭代中保存的那些:
在这里插入图片描述

GPT-2自注意:1-创建查询、键和值

假设模型正在处理it这个词。如果我们讨论的是底层块,那么它的输入token将是"it"的嵌入+槽#9的位置编码。
在这里插入图片描述
transformer中的每个块都有自己的权重(稍后在文章中分解)。我们首先遇到的是用于创建查询、键和值的权重矩阵。
在这里插入图片描述
自注意将其输入乘以其权重矩阵(并添加一个偏置向量,这里没有图示)。
乘法的结果是一个向量,它基本上是单词it的查询、键和值向量的串联。
在这里插入图片描述
将输入向量乘以注意力权重向量(并在后面添加一个偏置向量),将得到此token的键、值和查询向量。

GPT-2自注意:1.5-分成多个注意力头

在前面的例子中,我们直接跳入自注意,忽略了多头部分。现在就阐明这个很有帮助的概念。自注意操作在Q、K、V向量的不同部位进行多次。分割注意力只是简单地将长向量重塑为矩阵。这个小的GPT2有12个注意力头,所以这将是重塑矩阵的第一个维度。
在这里插入图片描述
在前面的例子中,我们已经了解了注意力头内部发生了什么。一种考虑多个注意力头的方法是这样的(如果我们只想像12个注意力头中的3个)
在这里插入图片描述

GPT-2自注意:2-得分

我们现在可以开始评分了,我们只看一个注意力头(其他所有注意力头都在进行类似的操作)
在这里插入图片描述
现在,token可以根据其他所有token的键进行评分(在以前的迭代中,在注意头#1中计算)
在这里插入图片描述

GPT-2自注意:3-求和

正如我们之前看到的,我们现在把每个值和它的分数相乘,然后把它们加起来,得到注意力头的第一个结果:
在这里插入图片描述

GPT-2自注意:3.5-合并注意力头

我们处理各个注意力头的方法是,首先将它们连接成一个向量
在这里插入图片描述
但是这个向量还没有准备好被发送到下一个子层。我们需要首先把这个隐藏状态(hidden states)变成齐次的表示(homogenous representation)。

GPT-2自注意:4-投影

我们将让这个模型学习如何将自注意结果最好地映射到前馈神经网络能够处理的向量中。这是我们的第二大权重矩阵,它将注意力的结果投射到自注意子层的输出向量中
在这里插入图片描述
有了这个,我们就得到了可以传递到下一层的向量
在这里插入图片描述

GPT-2全连接神经网络:第1层

全连接神经网络是在块在自注意后包含了对应上下文的表示之后处理其输入token的网络。它由两层组成。第一层是模型的四倍大小(因为GPT2 small是768,这个网络将有768*4=3072个单元)。为什么四倍?这正是原来的transformer的尺寸(模型尺寸为512,该模型的第1层为2048)。这似乎为transformer模型提供了足够来处理到目前为止交付给它们的任务的表示能力。
在这里插入图片描述
(未显示:偏置向量)

GPT-2全连接神经网络:第2层-投影到模型尺寸

第二层将第一层的结果投射回模型维度(小型GPT2为768)。此乘法的结果是此token的transformer块的结果。
在这里插入图片描述
(未显示:偏置向量)

就要成功了!

这是我们将要讨论的最详细的transformer模块!现在您已经大致了解了transformer语言模型中发生的绝大部分情况。回顾一下,我们勇敢的输入向量遇到了这些权矩阵:
在这里插入图片描述
每个块都有自己的权重。另一方面,该模型只有一个token嵌入矩阵和一个位置编码矩阵。
在这里插入图片描述
如果您想查看模型的所有参数,那么我已经将它们记录在这里了
在这里插入图片描述
由于某种原因,他们把参数加起来是124M而不是117M。我不知道为什么,但这是其中有多少似乎在公布的代码(如果我错了,请纠正我)。

Part 3: 超越语言模型

只有解码器的transformer在语言建模之外也展现了希望。在许多应用中,它都显示出了成功的一面,这可以用类似于上述的视觉效果来描述。让我们通过查看这些应用来结束本文。

机器翻译

翻译不需要编码器。同样的任务可以由一个仅有解码器的transformer来完成:
在这里插入图片描述

文本摘要

这就是第一个只有解码器的transformer训练的任务。也就是说,它被训练去阅读维基百科上的一篇文章(没有在目录前的开头部分),并对其进行总结。文章的实际开始部分用作训练数据集中的标签
在这里插入图片描述
论文根据wikipedia文章对模型进行了训练,因此训练后的模型能够总结文章
在这里插入图片描述

迁移学习

使用只有解码器的transformer进行高效文本摘要中,仅使用解码器的transformer首先进行语言模型的预训练,然后再进行摘要。结果表明,在有限的数据设置下,它比预训练的编码器-解码器transformer获得了更好的结果。
GPT2的论文还展示了对该模型进行语言模型预训练后的总结结果。

音乐生成

音乐transformer使用解码transformer产生能表达的时间和动态的音乐。音乐模型就像语言模型一样,只是让模型以一种无监督的方式学习音乐,然后让它输出样本(我们之前称之为rambling)。
你可能会好奇在这个场景中音乐是如何表现的。请记住,语言模型可以通过字符、单词或单词组成部分的token的向量表示来完成。在一场音乐表演中(现在让我们考虑一下钢琴),我们不仅要表现音符,还要表现速度——一种衡量钢琴按键按压力度的指标。
在这里插入图片描述
一场演出就是一系列这些独热(one-hot)向量。midi文件可以转换成这种格式。本文有如下示例输入序列
在这里插入图片描述
这个输入序列的独热向量表示形式是这样的
在这里插入图片描述
我喜欢论文中的一个视觉效果,它展示了《音乐Transformer》中的自注意。我在这里添加了一些注释
在这里插入图片描述
如果你对这些音符的表达不清楚,看看这个视频

结论

我们进入GPT2的旅程以及我们对其父模型(仅含解码器的transformer)的探索这便结束了。我希望你读完这篇文章时,对自注意能有更好的理解,对transformer内部发生的事情有更多的了解。

5. 代码学习及调试

灰色注释看起来太难受了,注释我用//意思一下。

项目结构

  • config:存放GPT2模型的参数的配置文件
  • data
    • train.txt:默认的原始训练集文件,存放闲聊语料
    • train_tokenized.txt:对原始训练语料进行顺序tokenize之后的文件,用于dialogue model的训练
    • train_mmi_tokenized.txt:对原始训练语料进行逆序tokenize之后的文件,用于mmi model的训练
  • dialogue_model:存放对话生成的模型
  • mmi_model:存放MMI模型(maximum mutual information scoring function),
    用于预测P(Source|response)
  • sample:存放人机闲聊生成的历史聊天记录
  • vocabulary:存放GPT2模型的字典
  • train.py:训练代码
  • interact.py:人机交互代码

train.py

//定义填充
PAD = '[PAD]'
pad_id = 0
logger = None

主要功能模块汇总

def setup_train_args():
    """
    设置训练参数
    """
def set_random_seed(args):
    """
    设置训练的随机种子
    """
def create_logger(args):
    """
    将日志输出到日志文件和控制台
    """
def create_model(args, vocab_size):
    """

    :param args:
    :param vocab_size:字典大小
    :return:
    """
def preprocess_raw_data(args, tokenizer, n_ctx):
    """
    对原始语料进行处理,将原始语料转换为用于train的token id,对于每个dialogue,将其处于成如下形式"[CLS]utterance1[SEP]utterance2[SEP]utterance3[SEP]"
    :param args:
    :param tokenizer:
    :param n_ctx:GPT2模型的上下文窗口大小,对于超过n_ctx(n_ctx包括了特殊字符)的dialogue进行截断
    :return:
    """
def calculate_loss_and_accuracy(outputs, labels, device):
    """
    计算非pad_id的平均loss和准确率
    :param outputs:
    :param labels:
    :param device:
    :return:
    """
def collate_fn(batch):
    """
    计算该batch中的所有sample的最长的input,并且将其他input的长度向其对齐
    :param batch:
    :return:
    """
def train(model, device, train_list, multi_gpu, args):
def evaluate(model, device, test_list, multi_gpu, args):

setup_train_args()

ArgumentParser 对象

def setup_train_args():
    """
    设置训练参数
    """

这里对parser.add_argument做下对于与项目相关的解释,节省一点检索时间。

class ArgumentParser(_AttributeHolder, _ActionsContainer):
    """Object for parsing command line strings into Python objects.

    Keyword Arguments:
        - prog -- The name of the program (default: sys.argv[0])
        - usage -- A usage message (default: auto-generated from arguments)
        - description -- A description of what the program does
        - epilog -- Text following the argument descriptions
        - parents -- Parsers whose arguments should be copied into this one
        - formatter_class -- HelpFormatter class for printing help messages
        - prefix_chars -- Characters that prefix optional arguments
        - fromfile_prefix_chars -- Characters that prefix files containing
            additional arguments
        - argument_default -- The default value for all arguments
        - conflict_handler -- String indicating how to handle conflicts
        - add_help -- Add a -h/-help option
        - allow_abbrev -- Allow long options to be abbreviated unambiguously
    """

    def __init__(self,
                 prog=None,   
                 usage=None,
                 description=None,
                 epilog=None,
                 parents=[],
                 formatter_class=HelpFormatter,
                 prefix_chars='-',
                 fromfile_prefix_chars=None,
                 argument_default=None,
                 conflict_handler='error',
                 add_help=True,
                 allow_abbrev=True):
                 
  • prog - 程序的名称(默认:sys.argv[0])
  • usage - 描述程序用途的字符串(默认值:从添加到解析器的参数生成)
  • description - 在参数帮助文档之前显示的文本(默认值:无)
  • epilog - 在参数帮助文档之后显示的文本(默认值:无)
  • parents - 一个 ArgumentParser 对象的列表,它们的参数也应包含在内
  • formatter_class - 用于自定义帮助文档输出格式的类
  • prefix_chars - 可选参数的前缀字符集合(默认值:’-’)
  • fromfile_prefix_chars - 当需要从文件中读取其他参数时,用于标识文件名的前缀字符集合(默认值:None)
  • argument_default - 参数的全局默认值(默认值: None)
  • conflict_handler - 解决冲突选项的策略(通常是不必要的)
  • add_help - 为解析器添加一个 -h/–help 选项(默认值: True)
  • allow_abbrev - 如果缩写是无歧义的,则允许缩写长选项 (默认值:True)

接一下来用项目中的实例具体过一下:

parser.add_argument('--device', default='0,1', type=str, required=False, help='设置使用哪些显卡'
  • 第一项 ‘–device’ 代表程序名称
  • default=‘0,1’ 代表在执行python脚本时如果对 ‘–device’ 项不进行设置时默认输入的值
  • type=str 输入的类型为字符串
  • required=False 通常,argparse模块假定 -f 和 --bar 等标志表示可选参数,这些参数在命令行中总是可以忽略的。要使选项成为必需的,可以为要添加的required=keyword参数指定True。这里是False则表明这项参数非必须。
  • help=‘设置使用哪些显卡’,用户在执行脚本时输入-h时对相应参数显示的帮助信息。
parser.add_argument
  • 19
    点赞
  • 95
    收藏
    觉得还不错? 一键收藏
  • 22
    评论
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值