经典算法大全51例——3.杨辉三角(又称帕斯卡三角形)
算法目录合集
地址
说明
该地址指向所有由本人自己所经历的算法习题(也有可能仅仅是一个入门的案例或者是经典案例),仅仅为我做过而且比较有意思的,也许还会有一些我自己想出来的,出于兴趣写在这里,具体格式我会在下面列明,总目录也会在这里出现,方便查阅以及自己进行复习回顾。
题目以及个人题解
原理分析
做这个图形首先要先找到数字之间的规律,然后再画个等腰三角形,相信等腰三角形家都会画,所以我着重说一下找规律的方法。
这个题有多种思路可以解决,在这里我提供两种思路供大家参考:
思路一——纵向寻踪
第一种思路非常简单,就是跟着这个三角形的规律走,也即是杨辉三角所发现的规律:一个数字为他的两肩之和,即:第三行的第二个数字为第二行的第一个和第二个数字的和;第八行的第五个数字,为第七行的第四个和第五个数字之和,发现规律没?第n行的第m个数字,就是第(n-1)行的第(m-1)和第m个数字的和,于是我们就可以规定好第一行与第二行的数字(都是1),以及大三角形两腰的数字(都是1),然后按照既定的规律来寻迹了。这便得到了我们的核心代码:
for (int row = 0; row < 总层数; row++) {
triangles[row][0] = 1;
triangles[row][row] = 1;
for (int seat = 1; seat < row; ++seat) {
triangles[row][seat] = triangles[row - 1][seat - 1] + triangles[row - 1][seat];
}
}
其中:
triangles[row][0] = 1;
triangles[row][row] = 1;
就是来为特殊情况(每条边)进行赋值为1 的。而:
for (int seat = 1; seat < row; ++seat) {
triangles[row][seat] = triangles[row - 1][seat - 1] + triangles[row - 1][seat];
}
就是实现第n行的第m个数字,就是第(n-1)行的第(m-1)和第m个数字的和的操作。于是就可以得到了我们所需要的数组,画出来即可。(具体代码以及结果参见下面的代码实现——方式一)
思路二——横向寻踪
这个思路不太容易想到,不过我给大家提个醒,在高中的时候,老师教的二项式定理大家有没有还给老师啊?😀😀😀😀这里就要用到相关的知识:
二项式定理的表现形式如下:
( x + y ) n = C n 0 x n y 0 + C n 1 x n − 1 y 1 + C n 2 x n − 2 y 2 + … … + C n n − 1 x 1 y n − 1 + C n n x 0 y n (x+y)^n =C_{n}^{0} x^ny^0+C_{n}^{1} x^{n-1}y^1+C_{n}^{2} x^{n-2}y^2+……+C_{n}^{n-1} x^1y^{n-1}+C_{n}^{n} x^0y^n (x+y)n=Cn0xny0+Cn1xn−1y1+Cn2xn−2y2+……+Cnn−1x1yn−1+Cnnx0yn
这里我们要用到的就是他们的常数项,即: C n 0 C_{n}^{0} Cn0、 C n 1 C_{n}^{1} Cn1、 C n 2 C_{n}^{2} Cn2 …… C n n − 1 C_{n}^{n-1} Cnn−1、 C n n C_{n}^{n} Cnn这些数,大家可以随意给n赋值,看看有什么结果?
n | 数列 |
---|---|
3 | 1、3、3、1 |
6 | 1、6、15、20、15、6、1 |
9 | 1、9、36、84、126、126、84、36、9、1 |
…… | …… |
n | C n 0 C_{n}^{0} Cn0、 C n 1 C_{n}^{1} Cn1、 C n 2 C_{n}^{2} Cn2 …… C n n − 1 C_{n}^{n-1} Cnn−1、 C n n C_{n}^{n} Cnn |
是否很神奇呢?根据二项式推出来的常数项的值,好巧不巧,与杨辉三角的相对应的层数的数列是完全一样的。那还不手到擒来?我们只需要把这个数学语言转化为计算机语言就行了,计算机怎么找出一行中的数字规律?他不行,得我们来,我们让计算机按照我们给出的值去计算就可以了,那么,当给定了第一个值 C n 0 C_{n}^{0} Cn0如何让他计算出 C n 1 C_{n}^{1} Cn1呢?给出了 C n n − 1 C_{n}^{n-1} Cnn−1又如何去找出 C n n C_{n}^{n} Cnn呢?我们不如随便假设一个数字 C n r C_{n}^{r} Cnr,看看他与他之后的一位