一周刷爆LeetCode笔记

一周刷爆LeetCode,算法大神左神(左程云)耗时100天打造算法与数据结构基础到高级全家桶教程,直击BTAJ等一线大厂必问算法面试题真题详解 笔记

教程与代码地址

笔记中,图片和代码基本源自up主的视频和代码

视频地址:一周刷爆LeetCode,算法大神左神(左程云)耗时100天打造算法与数据结构基础到高级全家桶教程,直击BTAJ等一线大厂必问算法面试题真题详解
代码地址:
讲义地址:
如果想要爬虫视频网站一样的csdn目录,可以去这里下载代码:https://github.com/JeffreyLeal/MyUtils/tree/%E7%88%AC%E8%99%AB%E5%B7%A5%E5%85%B71

P1 出圈了!讲课之外我们来聊聊算法和数据结构!以及未来!

P2 1.认识复杂度和简单排序算法

数组在内存空间中,是连续的区域;
列表在内存中不是连续的,而是一个指针指向下一个指针。

常数时间的操作:一个操作如果和样本的数据量没有关系,每次都是固定时间内完成的操作,叫做常数操作。比如数组的寻址操作,得到arr[i]的值,只需要起始地址+i就能算到该位置的地址,得到该位置上得值,是常数操作。而列表的寻址,就要逐个遍历,才得到list[i],这就不是常数操作。

基础第一课题目二:选择排序、冒泡排序

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是:第一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后再从剩余的未排序元素中寻找到最小(大)元素,然后放到已排序的序列的末尾。以此类推,直到全部待排序的数据元素的个数为零:
在这里插入图片描述
先找最小,次小,次次小…如此类推,一共n轮排序,每轮排序记录次轮比较中最小元素的位置,然后交换。

复杂度,在表达式中,只要高阶项,不要低阶项,也不要高阶项的系数,常数操作复杂度为

    O
   
   
    (
   
   
    
     N
    
    
     2
    
   
   
    )
   
  
  
   O(N^2)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.06411em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.814108em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>:<br> <img src="https://img-blog.csdnimg.cn/951784d5607c4635986d34331c169be5.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASmVmZnJleUxlYWw=,size_20,color_FFFFFF,t_70,g_se,x_16" alt="在这里插入图片描述"></p> 

看:看了多少眼;
比:2数比较,比较应该比看要少一次;
swap:交换,比较的过程只记录第i轮排序和第j个位置的下标,所以每一轮只交换了一次。
代码:

	public static void selectionSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		for (int i = 0; i < arr.length - 1; i++) {
			int minIndex = i;
			for (int j = i + 1; j < arr.length; j++) {
				minIndex = arr[j] < arr[minIndex] ? j : minIndex;
			}
			swap(arr, i, minIndex);
		}
	}
<span class="token keyword">public</span> <span class="token keyword">static</span> <span class="token keyword">void</span> <span class="token function">swap</span><span class="token punctuation">(</span><span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> arr<span class="token punctuation">,</span> <span class="token keyword">int</span> i<span class="token punctuation">,</span> <span class="token keyword">int</span> j<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
	<span class="token keyword">int</span> tmp <span class="token operator">=</span> arr<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">;</span>
	arr<span class="token punctuation">[</span>i<span class="token punctuation">]</span> <span class="token operator">=</span> arr<span class="token punctuation">[</span>j<span class="token punctuation">]</span><span class="token punctuation">;</span>
	arr<span class="token punctuation">[</span>j<span class="token punctuation">]</span> <span class="token operator">=</span> tmp<span class="token punctuation">;</span>
<span class="token punctuation">}</span>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

冒泡排序

冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。 它重复地走访过要排序的元素列,依次比较两个相邻的元素,如果顺序(如从大到小、首字母从Z到A)错误就把他们交换过来。走访元素的工作是重复地进行直到没有相邻元素需要交换,也就是说该元素列已经排序完成。 这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端(升序或降序排列),就如同碳酸饮料中二氧化碳的气泡最终会上浮到顶端一样,故名“冒泡排序”。
在这里插入图片描述
两两比较,大的右移,比较窗口滑动,直到最大的数放到最后,结束一轮比较,再开始下一轮。

此算法时间复杂度也为

    O
   
   
    (
   
   
    
     N
    
    
     2
    
   
   
    )
   
  
  
   O(N^2)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.06411em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.814108em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>。</p> 

基础第一课题目五:异或运算

异或运算,异或操作性质:一个数与自身异或=自身
在这里插入图片描述
位运算,先转换为2进制表示,运算完后,再转回10进制:

public class Test {
    public static void main(String[] args) {
        int a = 7;
        int b = 4;
        int c = a^b;
        int d = a^b^a;
        System.out.println(c);
        System.out.println(d);
    }

}

控制台:
3
4

Process finished with exit code 0

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

下面三行代码跑完,2个数完成互换:
在这里插入图片描述
这么做的前提2个交换数的内存地址不能一样,不然就是自身与自身异或,结果是0。

例题

在这里插入图片描述

1)数组中,一个数出现了奇数次,其他数出现了偶数次,要找奇数次的数
答案:将所有数都异或,最后只剩下奇数次的数。
在这里插入图片描述

	public static void printOddTimesNum1(int[] arr) {
		int eO = 0;
		for (int cur : arr) {
			eO ^= cur;
		}
		System.out.println(eO);
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

1)数组中,2个数a,b出现了奇数次,其他数出现了偶数次,要找奇数次的数
答案:将所有数都异或,得到eor=a异或b;因为a!=b,所以eor!=0,必造成eor有一个位上为1,那个位就能用来区分a和b。

eor & (~eor + 1);//选出e0最右边的一个1:
在这里插入图片描述

	public static void printOddTimesNum2(int[] arr) {
		int eO = 0, eOhasOne = 0;
		for (int curNum : arr) {
			eO ^= curNum;
		}
		int rightOne = eO & (~eO + 1);//选出e0最右边的一个1,
		for (int cur : arr) {
			if ((cur & rightOne) != 0) {
				eOhasOne ^= cur;//最后得到的这个数,是这一个位上有1的数,与其他数的异或
			}
		}
		System.out.println(eOhasOne + " " + (eO ^ eOhasOne));
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

基础第一课题目三:插入排序

插入排序,一般也被称为直接插入排序。对于少量元素的排序,它是一个有效的算法。插入排序是一种最简单的排序方法,它的基本思想是将一个记录插入到已经排好序的有序表中,从而一个新的、记录数增1的有序表。在其实现过程使用双层循环,外层循环对除了第一个元素之外的所有元素,内层循环对当前元素前面有序表进行待插入位置查找,并进行移动。

算法步骤:
0~1范围有序;
0~2范围有序,将第二个位置的数插入到前面,排好序就停下,所以比较的次数与数据的结构有关。

算法复杂度,只计算最坏情况的复杂度。此算法时间复杂度也为

    O
   
   
    (
   
   
    
     N
    
    
     2
    
   
   
    )
   
  
  
   O(N^2)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.06411em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.814108em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>。<br> <img src="https://img-blog.csdnimg.cn/6ea9bf9026ef4c83a11b55d400008e30.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASmVmZnJleUxlYWw=,size_9,color_FFFFFF,t_70,g_se,x_16" alt="在这里插入图片描述"></p> 

	public static void insertionSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		for (int i = 1; i < arr.length; i++) {
			//判断条件,j >= 0:换到最后就停,arr[j] > arr[j + 1]排好序就停
			for (int j = i - 1; j >= 0 && arr[j] > arr[j + 1]; j--) {
				swap(arr, j, j + 1);
			}
		}
	}

	public static void swap(int[] arr, int i, int j) {
		arr[i] = arr[i] ^ arr[j];
		arr[j] = arr[i] ^ arr[j];
		arr[i] = arr[i] ^ arr[j];
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

基础第一课题目四:二分法的详解与扩展

1)在一个有序数组中,找某个数是否存在
在这里插入图片描述
2分找到数就停止。

2)在一个有序数组中,找>=某个数最左侧的位置
在这里插入图片描述
2分找到数,还要继续,直到最左侧停止。

3)局部最小值问题,数组无序,任何两个相邻的数不相等,局部最小值定义为既小于左边数,也小于右边数。
在这里插入图片描述
用的是零点定理的思想,上图中,3个位置的趋势,左边两个趋势,中间必有最小值。

基础第一课题目六:对数器的概念和使用

使用对数器检查排序算法的准确
在这里插入图片描述

算法c是自己写的,算法b是系统提供的排序算法,使用随机数组,2种算法对比,看c是否有错。不依赖线上测试平台,自己就能测出来。

对数器:

public static void comparator(int[] arr) {
		Arrays.sort(arr);
	}

 
 
  • 1
  • 2
  • 3

P3 2.认识O(NlogN)的排序

基础第一课题目七:递归排序

用递归方法找一个数组中的最大值,系统上到底是怎么做的?

求中点,第一行L+R可能会溢出,第三行使用右移一位就是除以2。
在这里插入图片描述
递归函数的拆分:
在这里插入图片描述
由上往下,不断进栈,多叉树,每一条叉都会进栈出栈,实现遍历。

在这里插入图片描述

	public static int getMax(int[] arr) {
		return process(arr, 0, arr.length - 1);
	}
<span class="token keyword">public</span> <span class="token keyword">static</span> <span class="token keyword">int</span> <span class="token function">process</span><span class="token punctuation">(</span><span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> arr<span class="token punctuation">,</span> <span class="token keyword">int</span> <span class="token class-name">L</span><span class="token punctuation">,</span> <span class="token keyword">int</span> <span class="token class-name">R</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
	<span class="token keyword">if</span> <span class="token punctuation">(</span><span class="token class-name">L</span> <span class="token operator">==</span> <span class="token class-name">R</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
		<span class="token keyword">return</span> arr<span class="token punctuation">[</span><span class="token class-name">L</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">int</span> mid <span class="token operator">=</span> <span class="token class-name">L</span> <span class="token operator">+</span> <span class="token punctuation">(</span><span class="token punctuation">(</span><span class="token class-name">R</span> <span class="token operator">-</span> <span class="token class-name">L</span><span class="token punctuation">)</span> <span class="token operator">&gt;&gt;</span> <span class="token number">1</span><span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token keyword">int</span> leftMax <span class="token operator">=</span> <span class="token function">process</span><span class="token punctuation">(</span>arr<span class="token punctuation">,</span> <span class="token class-name">L</span><span class="token punctuation">,</span> mid<span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token keyword">int</span> rightMax <span class="token operator">=</span> <span class="token function">process</span><span class="token punctuation">(</span>arr<span class="token punctuation">,</span> mid <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">,</span> <span class="token class-name">R</span><span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token keyword">return</span> <span class="token class-name">Math</span><span class="token punctuation">.</span><span class="token function">max</span><span class="token punctuation">(</span>leftMax<span class="token punctuation">,</span> rightMax<span class="token punctuation">)</span><span class="token punctuation">;</span>
<span class="token punctuation">}</span>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在这里插入图片描述
使用此公式的前提是子问题的规模要一致。
在这里插入图片描述
左边是母问题的复杂度,右边第一项是子问题的复杂度,第二项为其余操作的复杂度。

上述代码,2个子问题的规模都是N/2,加上一次if,一次算中点,一次比较,这3个常数操作的总复杂度是

    O
   
   
    (
   
   
    1
   
   
    )
   
  
  
   O(1)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord">1</span><span class="mclose">)</span></span></span></span></span>。</p> 

基础第二课题目一:归并排序

归并排序的主要思想是分治法。主要过程是: 将n个元素从中间切开,分成两部分。(左边可能比右边多1个数) 将步骤1分成的两部分,再分别进行递归分解。直到所有部分的元素个数都为1。 从最底层开始逐步合并两个排好序的数列
在这里插入图片描述
在这里插入图片描述

	public static void mergeSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		mergeSort(arr, 0, arr.length - 1);
	}
<span class="token keyword">public</span> <span class="token keyword">static</span> <span class="token keyword">void</span> <span class="token function">mergeSort</span><span class="token punctuation">(</span><span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> arr<span class="token punctuation">,</span> <span class="token keyword">int</span> l<span class="token punctuation">,</span> <span class="token keyword">int</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
	<span class="token keyword">if</span> <span class="token punctuation">(</span>l <span class="token operator">==</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
		<span class="token keyword">return</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">int</span> mid <span class="token operator">=</span> l <span class="token operator">+</span> <span class="token punctuation">(</span><span class="token punctuation">(</span>r <span class="token operator">-</span> l<span class="token punctuation">)</span> <span class="token operator">&gt;&gt;</span> <span class="token number">1</span><span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token function">mergeSort</span><span class="token punctuation">(</span>arr<span class="token punctuation">,</span> l<span class="token punctuation">,</span> mid<span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token function">mergeSort</span><span class="token punctuation">(</span>arr<span class="token punctuation">,</span> mid <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">,</span> r<span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token function">merge</span><span class="token punctuation">(</span>arr<span class="token punctuation">,</span> l<span class="token punctuation">,</span> mid<span class="token punctuation">,</span> r<span class="token punctuation">)</span><span class="token punctuation">;</span>
<span class="token punctuation">}</span>

<span class="token keyword">public</span> <span class="token keyword">static</span> <span class="token keyword">void</span> <span class="token function">merge</span><span class="token punctuation">(</span><span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> arr<span class="token punctuation">,</span> <span class="token keyword">int</span> l<span class="token punctuation">,</span> <span class="token keyword">int</span> m<span class="token punctuation">,</span> <span class="token keyword">int</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
	<span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> help <span class="token operator">=</span> <span class="token keyword">new</span> <span class="token keyword">int</span><span class="token punctuation">[</span>r <span class="token operator">-</span> l <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token keyword">int</span> i <span class="token operator">=</span> <span class="token number">0</span><span class="token punctuation">;</span>
	<span class="token keyword">int</span> p1 <span class="token operator">=</span> l<span class="token punctuation">;</span>
	<span class="token keyword">int</span> p2 <span class="token operator">=</span> m <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">;</span>
	<span class="token keyword">while</span> <span class="token punctuation">(</span>p1 <span class="token operator">&lt;=</span> m <span class="token operator">&amp;&amp;</span> p2 <span class="token operator">&lt;=</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span><span class="token comment">//一直往help里面黏贴,同时p1或p2指针一直右移直至越界</span>
		help<span class="token punctuation">[</span>i<span class="token operator">++</span><span class="token punctuation">]</span> <span class="token operator">=</span> arr<span class="token punctuation">[</span>p1<span class="token punctuation">]</span> <span class="token operator">&lt;</span> arr<span class="token punctuation">[</span>p2<span class="token punctuation">]</span> <span class="token operator">?</span> arr<span class="token punctuation">[</span>p1<span class="token operator">++</span><span class="token punctuation">]</span> <span class="token operator">:</span> arr<span class="token punctuation">[</span>p2<span class="token operator">++</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">while</span> <span class="token punctuation">(</span>p1 <span class="token operator">&lt;=</span> m<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span><span class="token comment">//把没越界的指针后面剩余的数组黏贴到help里面</span>
		help<span class="token punctuation">[</span>i<span class="token operator">++</span><span class="token punctuation">]</span> <span class="token operator">=</span> arr<span class="token punctuation">[</span>p1<span class="token operator">++</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">while</span> <span class="token punctuation">(</span>p2 <span class="token operator">&lt;=</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span><span class="token comment">//把没越界的指针后面剩余的数组黏贴到help里面</span>
		help<span class="token punctuation">[</span>i<span class="token operator">++</span><span class="token punctuation">]</span> <span class="token operator">=</span> arr<span class="token punctuation">[</span>p2<span class="token operator">++</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">for</span> <span class="token punctuation">(</span>i <span class="token operator">=</span> <span class="token number">0</span><span class="token punctuation">;</span> i <span class="token operator">&lt;</span> help<span class="token punctuation">.</span>length<span class="token punctuation">;</span> i<span class="token operator">++</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span><span class="token comment">//把排好序的help数组黏贴到原始数组的位置</span>
		arr<span class="token punctuation">[</span>l <span class="token operator">+</span> i<span class="token punctuation">]</span> <span class="token operator">=</span> help<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

在这里插入图片描述
子问题mergeSort的规模都是N/2,merge的复杂度是N,母问题的复杂度为

    O
   
   
    (
   
   
    N
   
   
    ∗
   
   
    log
   
   
    ⁡
   
   
    N
   
   
    )
   
   
    +
   
   
    O
   
   
    (
   
   
    N
   
   
    )
   
  
  
   O(N*\log N)+O(N)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">∗</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mop">lo<span style="margin-right: 0.01389em;">g</span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mclose">)</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mclose">)</span></span></span></span></span>。选择排序,冒泡排序,插入排序,都是有大量重复的比较,浪费了比较的信息,而归并排序,用空间换了时间,每次比较都没有被浪费,每次比较都进行排序,所以复杂度低。<br> <img src="https://img-blog.csdnimg.cn/af25d8e2d3384a289a32941f829291ac.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASmVmZnJleUxlYWw=,size_20,color_FFFFFF,t_70,g_se,x_16" alt="在这里插入图片描述"></p> 

基础第二课题目二:归并排序的扩展

小和问题

在这里插入图片描述
直接遍历的复杂度:
在这里插入图片描述
问题可以转换为,算一个数,右边有多少个数比他大:比1大有4个,比3大有2个…
在这里插入图片描述
其实就是在递归合并里面加了一行代码,计算右边数组中,有多少个数比p1指针所指的数要大。

	public static int smallSum(int[] arr) {
		if (arr == null || arr.length < 2) {
			return 0;
		}
		return mergeSort(arr, 0, arr.length - 1);
	}
<span class="token keyword">public</span> <span class="token keyword">static</span> <span class="token keyword">int</span> <span class="token function">mergeSort</span><span class="token punctuation">(</span><span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> arr<span class="token punctuation">,</span> <span class="token keyword">int</span> l<span class="token punctuation">,</span> <span class="token keyword">int</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
	<span class="token keyword">if</span> <span class="token punctuation">(</span>l <span class="token operator">==</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
		<span class="token keyword">return</span> <span class="token number">0</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">int</span> mid <span class="token operator">=</span> l <span class="token operator">+</span> <span class="token punctuation">(</span><span class="token punctuation">(</span>r <span class="token operator">-</span> l<span class="token punctuation">)</span> <span class="token operator">&gt;&gt;</span> <span class="token number">1</span><span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token keyword">return</span> <span class="token function">mergeSort</span><span class="token punctuation">(</span>arr<span class="token punctuation">,</span> l<span class="token punctuation">,</span> mid<span class="token punctuation">)</span> <span class="token comment">//左侧排序求小和</span>
			<span class="token operator">+</span> <span class="token function">mergeSort</span><span class="token punctuation">(</span>arr<span class="token punctuation">,</span> mid <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">,</span> r<span class="token punctuation">)</span> <span class="token comment">//右侧侧排序求小和</span>
			<span class="token operator">+</span> <span class="token function">merge</span><span class="token punctuation">(</span>arr<span class="token punctuation">,</span> l<span class="token punctuation">,</span> mid<span class="token punctuation">,</span> r<span class="token punctuation">)</span><span class="token punctuation">;</span><span class="token comment">//2侧排序求小和</span>
<span class="token punctuation">}</span>

<span class="token keyword">public</span> <span class="token keyword">static</span> <span class="token keyword">int</span> <span class="token function">merge</span><span class="token punctuation">(</span><span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> arr<span class="token punctuation">,</span> <span class="token keyword">int</span> l<span class="token punctuation">,</span> <span class="token keyword">int</span> m<span class="token punctuation">,</span> <span class="token keyword">int</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
	<span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> help <span class="token operator">=</span> <span class="token keyword">new</span> <span class="token keyword">int</span><span class="token punctuation">[</span>r <span class="token operator">-</span> l <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token keyword">int</span> i <span class="token operator">=</span> <span class="token number">0</span><span class="token punctuation">;</span>
	<span class="token keyword">int</span> p1 <span class="token operator">=</span> l<span class="token punctuation">;</span>
	<span class="token keyword">int</span> p2 <span class="token operator">=</span> m <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">;</span>
	<span class="token keyword">int</span> res <span class="token operator">=</span> <span class="token number">0</span><span class="token punctuation">;</span>
	<span class="token keyword">while</span> <span class="token punctuation">(</span>p1 <span class="token operator">&lt;=</span> m <span class="token operator">&amp;&amp;</span> p2 <span class="token operator">&lt;=</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
		res <span class="token operator">+=</span> arr<span class="token punctuation">[</span>p1<span class="token punctuation">]</span> <span class="token operator">&lt;</span> arr<span class="token punctuation">[</span>p2<span class="token punctuation">]</span> <span class="token operator">?</span> <span class="token punctuation">(</span>r <span class="token operator">-</span> p2 <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">)</span> <span class="token operator">*</span> arr<span class="token punctuation">[</span>p1<span class="token punctuation">]</span> <span class="token operator">:</span> <span class="token number">0</span><span class="token punctuation">;</span><span class="token comment">//记录右边的数组有几个数比左边当前数要大</span>
		help<span class="token punctuation">[</span>i<span class="token operator">++</span><span class="token punctuation">]</span> <span class="token operator">=</span> arr<span class="token punctuation">[</span>p1<span class="token punctuation">]</span> <span class="token operator">&lt;</span> arr<span class="token punctuation">[</span>p2<span class="token punctuation">]</span> <span class="token operator">?</span> arr<span class="token punctuation">[</span>p1<span class="token operator">++</span><span class="token punctuation">]</span> <span class="token operator">:</span> arr<span class="token punctuation">[</span>p2<span class="token operator">++</span><span class="token punctuation">]</span><span class="token punctuation">;</span><span class="token comment">//一直往help里面黏贴,同时p1或p2指针一直右移直至越界,将2个数组合并重排</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">while</span> <span class="token punctuation">(</span>p1 <span class="token operator">&lt;=</span> m<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span><span class="token comment">//把没越界的指针后面剩余的数组黏贴到help里面</span>
		help<span class="token punctuation">[</span>i<span class="token operator">++</span><span class="token punctuation">]</span> <span class="token operator">=</span> arr<span class="token punctuation">[</span>p1<span class="token operator">++</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">while</span> <span class="token punctuation">(</span>p2 <span class="token operator">&lt;=</span> r<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span><span class="token comment">//把没越界的指针后面剩余的数组黏贴到help里面</span>
		help<span class="token punctuation">[</span>i<span class="token operator">++</span><span class="token punctuation">]</span> <span class="token operator">=</span> arr<span class="token punctuation">[</span>p2<span class="token operator">++</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">for</span> <span class="token punctuation">(</span>i <span class="token operator">=</span> <span class="token number">0</span><span class="token punctuation">;</span> i <span class="token operator">&lt;</span> help<span class="token punctuation">.</span>length<span class="token punctuation">;</span> i<span class="token operator">++</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span><span class="token comment">//把排好序的help数组黏贴到原始数组的位置</span>
		arr<span class="token punctuation">[</span>l <span class="token operator">+</span> i<span class="token punctuation">]</span> <span class="token operator">=</span> help<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">return</span> res<span class="token punctuation">;</span>
<span class="token punctuation">}</span>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

逆序对问题

在一个数组中,左边的数如果比右边的数大,则折两个数构成一个逆序对,请打印所有逆序对。

示例:对于0来说,30,20,40,50都是逆序对。
在这里插入图片描述

只要涉及数组中,两两比较,再进行操作的,都可以用归并排序。

基础第二课题目六:荷兰国旗问题

在这里插入图片描述
在这里插入图片描述
小于区域不断往右扩展,遇到比num大的数,就与未比较的区域的数交换,把大于num的数扔到右边,直到小于区域与右边的大于区域相遇。

在这里插入图片描述

做法:
在这里插入图片描述
在这里插入图片描述
小于区域推着等于区域走。

基础第二课题目七:快速排序

1.0版本,用上面问题一和递归的结合
在这里插入图片描述
2.0版本,用上面问题二(荷兰国旗问题)和递归的结合
在这里插入图片描述
1.0,2.0版本,都有可能遇到划分的极端情况,左边区域很大,右边很小,复杂度就为

    O
   
   
    (
   
   
    
     N
    
    
     2
    
   
   
    )
   
  
  
   O(N^2)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.06411em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.814108em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span>。</p> 

3.0版本,随机选择一个数来划分,那个极端好和极端坏的情况都是等概率事件,复杂度与概率求期望,得到期望复杂度为

    O
   
   
    (
   
   
    N
   
   
    log
   
   
    ⁡
   
   
    N
   
   
    )
   
  
  
   O(N\log N)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mop">lo<span style="margin-right: 0.01389em;">g</span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mclose">)</span></span></span></span></span>。</p> 

	public static void quickSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		quickSort(arr, 0, arr.length - 1);
	}

	public static void quickSort(int[] arr, int l, int r) {
		if (l < r) {
			//将末位数字随机打乱
			swap(arr, l + (int) (Math.random() * (r - l + 1)), r);

			int[] p = partition(arr, l, r);
			quickSort(arr, l, p[0] - 1);
			quickSort(arr, p[1] + 1, r);
		}
	}

	public static int[] partition(int[] arr, int l, int r) {
		int less = l - 1;
		int more = r;
		while (l < more) {
			if (arr[l] < arr[r]) {
				swap(arr, ++less, l++);//把当前数归到less区域
			} else if (arr[l] > arr[r]) {
				swap(arr, --more, l);//把当前数归到more区域
			} else {
				l++;//推着equal区域右移
			}
		}
		swap(arr, more, r);//把num放到equal区域
		return new int[] { less + 1, more };//返回less区域和equal区域的边界,equal区域和more区域的边界
	}

	public static void swap(int[] arr, int i, int j) {
		int tmp = arr[i];
		arr[i] = arr[j];
		arr[j] = tmp;
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39

P4 3.详解桶排序以及排序内容大总结

不完全二叉树示例:
在这里插入图片描述
二叉树结构:
在这里插入图片描述
大根堆:父节点的数比子节点的数要大,示例:
在这里插入图片描述
利用在这里插入图片描述
新进堆的数与父节点比较,形成大根堆
在这里插入图片描述
把新的数插入到堆中,就是上移:

	public static void heapInsert(int[] arr, int index) {
		while (arr[index] > arr[(index - 1) / 2]) {//当前节点数值大于父节点位置
			swap(arr, index, (index - 1) /2);
			index = (index - 1)/2 ;
		}
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

某数a在index位置,将其往下移动,至堆结构符合大根堆要求,,就是下移:

	//某数a在index位置,将其往下移动
	public static void heapify(int[] arr, int index, int size) {//size为数组长度
		int left = index * 2 + 1;//左孩子位置
		while (left < size) {//判断孩子是否存在
			//只有当右孩子存在且大于左孩子时,才取右孩子作为最大值;
			//其余情况选左孩子,包括
			//	1.右孩子不存在
			//	2.右孩子存在但没左孩子大
			//largest记录最大值的位置
			int largest = left + 1 < size && arr[left + 1] > arr[left] ? left + 1 : left;
			//比较父节点和大孩子之间谁大,记录下大的值的位置
			largest = arr[largest] > arr[index] ? largest : index;
			//如果父节点比较大,堆结构排好,退出
			if (largest == index) {
				break;
			}
			//孩子比较大,交换父和孩子的位置
			swap(arr, largest, index);
			//记录某数a的新位置
			index = largest;
			//记录处于新位置的某数a的左孩子
			left = index * 2 + 1;
		}
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

新增一个数,或删除最大值,调整的复杂度都是

    O
   
   
    (
   
   
    log
   
   
    ⁡
   
   
    N
   
   
    )
   
  
  
   O(\log N)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mop">lo<span style="margin-right: 0.01389em;">g</span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mclose">)</span></span></span></span></span>。</p> 

用大根堆来排序:
所有数字先入大根堆,然后将最大数字于heapsize最后一个元素交换,heapsize减一,然后第一个数做heapify的下移操作,如此反复,就能将全部数字排序,调整的复杂度都是

    O
   
   
    (
   
   
    N
   
   
    log
   
   
    ⁡
   
   
    N
   
   
    )
   
  
  
   O(N\log N)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mop">lo<span style="margin-right: 0.01389em;">g</span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mclose">)</span></span></span></span></span>。<br> <img src="https://img-blog.csdnimg.cn/3e9c03661d0e4099a7576140fdb5a743.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASmVmZnJleUxlYWw=,size_20,color_FFFFFF,t_70,g_se,x_16" alt="在这里插入图片描述"></p> 

	public static void heapSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		//将所有数字搞成大根堆
		for (int i = 0; i < arr.length; i++) {// O(N)
			heapInsert(arr, i);// O(logN)
		}
		int size = arr.length;
		//0位置上的数与heapsize最后一个数交换
		swap(arr, 0, --size);
		while (size > 0) {// O(N)
			//0位置上的数重新调整位置
			heapify(arr, 0, size);// O(logN)
			//0位置上的数与heapsize最后一个数交换,heapsize减小
			swap(arr, 0, --size);// O(1)
		}
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

第一步,全部数字变成大根堆,有优化做法,最小的树做heapify,然后次小…:
在这里插入图片描述
假设最底层代价是1,倒数第二层代价是二,如此类推:
在这里插入图片描述
复杂度使用错位相加法:
在这里插入图片描述
最终复杂度为

    O
   
   
    (
   
   
    N
   
   
    )
   
  
  
   O( N)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mclose">)</span></span></span></span></span>。</p> 

	public static void heapSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		//将所有数字搞成大根堆
		//做法1:
//		for (int i = 0; i < arr.length; i++) {// O(N)
//			heapInsert(arr, i);// O(logN)
//		}
		//做法2:
		for (int i = arr.length-1; i >= 0 ; i--) {
			heapify(arr, i, arr.length);
		}
		int size = arr.length;
		//0位置上的数与heapsize最后一个数交换
		swap(arr, 0, --size);
		while (size > 0) {// O(N)
			//0位置上的数重新调整位置
			heapify(arr, 0, size);// O(logN)
			//0位置上的数与heapsize最后一个数交换,heapsize减小
			swap(arr, 0, --size);// O(1)
		}
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

基础第二课题目五:堆排序扩展题目

在这里插入图片描述
因为0位置上的正确数一定在0-6这七个数中,所以将这7个数在小根堆中排好序,最小值就可以弹出放到0位置上,然后再加入下一个数,进行重复操作。复杂度为

    O
   
   
    (
   
   
    N
   
   
    log
   
   
    ⁡
   
   
    k
   
   
    )
   
  
  
   O( N\log k)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mop">lo<span style="margin-right: 0.01389em;">g</span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault" style="margin-right: 0.03148em;">k</span><span class="mclose">)</span></span></span></span></span>。</p> 

    public static void main(String[] args) {
        PriorityQueue<Integer> heap = new PriorityQueue<>();
        heap.add(8);
        heap.add(3);
        heap.add(6);
        heap.add(2);
        heap.add(4);
        while (!heap.isEmpty()){
            System.out.println(heap.poll());
        }
        
    }

输出
2
3
4
6
8

Process finished with exit code 0

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

在这里插入图片描述

	public void sortedArrDistanceLessK(int[] arr, int k) {
		PriorityQueue<Integer> heap = new PriorityQueue<>();
		int index = 0;
		//k个数形成小根堆
		for (; index < Math.min(arr.length, k); index++) {
			heap.add(arr[index]);
		}
		int i = 0;
		for (; index < arr.length; i++, index++) {
			heap.add(arr[index]);//加一个数
			arr[i] = heap.poll();//弹出一个最小值
		}
		while (!heap.isEmpty()) {//依次弹出k个最小值
			arr[i++] = heap.poll();
		}
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

小根堆会遇到不够空间时扩容,扩容就会复制一次,长度为多少,复杂度就为多少,一共扩容 logN 次,总扩容复杂度为

    O
   
   
    (
   
   
    N
   
   
    log
   
   
    ⁡
   
   
    N
   
   
    )
   
  
  
   O( N\log N)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mop">lo<span style="margin-right: 0.01389em;">g</span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mclose">)</span></span></span></span></span>,均摊下来每个元素,复杂度为 <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
    O
   
   
    (
   
   
    log
   
   
    ⁡
   
   
    N
   
   
    )
   
  
  
   O( \log N)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.02778em;">O</span><span class="mopen">(</span><span class="mop">lo<span style="margin-right: 0.01389em;">g</span></span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord mathdefault" style="margin-right: 0.10903em;">N</span><span class="mclose">)</span></span></span></span></span>。</p> 

系统提供的堆,只能给一个数,弹出一个数,不能做到上述的高效操作,要实现有高效操作的,必须自己写。

基础第三课题目二:桶排序

基于词频,频率的统计,然后还原成有序的数组:
在这里插入图片描述
计数排序:
在这里插入图片描述
基数排序:
先按个位数放进桶,然后从左往右,先进先出导出,再按十位数排序,重复,再按百位
在这里插入图片描述
2:22:00开始看,代码的实现count不是记录桶

    i
   
  
  
   i
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span> 里面有多少个数,而是记录 <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
    ≤
   
   
    i
   
  
  
   \leq i
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.77194em; vertical-align: -0.13597em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.65952em; vertical-align: 0em;"></span><span class="mord mathdefault">i</span></span></span></span></span> 里面有多少个数。</p> 

在这里插入图片描述

	// only for no-negative value
	public static void radixSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		radixSort(arr, 0, arr.length - 1, maxbits(arr));
	}
	//计算最大的十进制位是第几位
	public static int maxbits(int[] arr) {
		int max = Integer.MIN_VALUE;
		for (int i = 0; i < arr.length; i++) {
			max = Math.max(max, arr[i]);//寻找数组中最大的数
		}
		int res = 0;
		while (max != 0) {
			res++;
			max /= 10;//自动整除,因为max是int
		}
		return res;
	}
<span class="token keyword">public</span> <span class="token keyword">static</span> <span class="token keyword">void</span> <span class="token function">radixSort</span><span class="token punctuation">(</span><span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> arr<span class="token punctuation">,</span> <span class="token keyword">int</span> begin<span class="token punctuation">,</span> <span class="token keyword">int</span> end<span class="token punctuation">,</span> <span class="token keyword">int</span> digit<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
	<span class="token keyword">final</span> <span class="token keyword">int</span> radix <span class="token operator">=</span> <span class="token number">10</span><span class="token punctuation">;</span>
	<span class="token keyword">int</span> i <span class="token operator">=</span> <span class="token number">0</span><span class="token punctuation">,</span> j <span class="token operator">=</span> <span class="token number">0</span><span class="token punctuation">;</span>

	<span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> bucket <span class="token operator">=</span> <span class="token keyword">new</span> <span class="token keyword">int</span><span class="token punctuation">[</span>end <span class="token operator">-</span> begin <span class="token operator">+</span> <span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
	<span class="token comment">//digit多少哥十进制位,也代表入桶出桶的次数</span>
	<span class="token keyword">for</span> <span class="token punctuation">(</span><span class="token keyword">int</span> d <span class="token operator">=</span> <span class="token number">1</span><span class="token punctuation">;</span> d <span class="token operator">&lt;=</span> digit<span class="token punctuation">;</span> d<span class="token operator">++</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
		<span class="token keyword">int</span><span class="token punctuation">[</span><span class="token punctuation">]</span> count <span class="token operator">=</span> <span class="token keyword">new</span> <span class="token keyword">int</span><span class="token punctuation">[</span>radix<span class="token punctuation">]</span><span class="token punctuation">;</span>
		<span class="token comment">//用于记录当前位上等于0,...,等于9的各有多少个数</span>
		<span class="token keyword">for</span> <span class="token punctuation">(</span>i <span class="token operator">=</span> begin<span class="token punctuation">;</span> i <span class="token operator">&lt;=</span> end<span class="token punctuation">;</span> i<span class="token operator">++</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
			j <span class="token operator">=</span> <span class="token function">getDigit</span><span class="token punctuation">(</span>arr<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">,</span> d<span class="token punctuation">)</span><span class="token punctuation">;</span><span class="token comment">//确认当位上的数是多少</span>
			count<span class="token punctuation">[</span>j<span class="token punctuation">]</span><span class="token operator">++</span><span class="token punctuation">;</span><span class="token comment">//等于该位上的数,统计加1</span>
		<span class="token punctuation">}</span>
		<span class="token comment">//用于记录当前位上小于等于0,...,小于等于9的各有多少个数</span>
		<span class="token comment">//同时也记录了当前位上等于0,...,等于9的数组最后一个数出桶后的位置</span>
		<span class="token keyword">for</span> <span class="token punctuation">(</span>i <span class="token operator">=</span> <span class="token number">1</span><span class="token punctuation">;</span> i <span class="token operator">&lt;</span> radix<span class="token punctuation">;</span> i<span class="token operator">++</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
			count<span class="token punctuation">[</span>i<span class="token punctuation">]</span> <span class="token operator">=</span> count<span class="token punctuation">[</span>i<span class="token punctuation">]</span> <span class="token operator">+</span> count<span class="token punctuation">[</span>i <span class="token operator">-</span> <span class="token number">1</span><span class="token punctuation">]</span><span class="token punctuation">;</span>
		<span class="token punctuation">}</span>
		<span class="token keyword">for</span> <span class="token punctuation">(</span>i <span class="token operator">=</span> end<span class="token punctuation">;</span> i <span class="token operator">&gt;=</span> begin<span class="token punctuation">;</span> i<span class="token operator">--</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
			j <span class="token operator">=</span> <span class="token function">getDigit</span><span class="token punctuation">(</span>arr<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">,</span> d<span class="token punctuation">)</span><span class="token punctuation">;</span>
			bucket<span class="token punctuation">[</span>count<span class="token punctuation">[</span>j<span class="token punctuation">]</span> <span class="token operator">-</span> <span class="token number">1</span><span class="token punctuation">]</span> <span class="token operator">=</span> arr<span class="token punctuation">[</span>i<span class="token punctuation">]</span><span class="token punctuation">;</span><span class="token comment">//出桶后的位置上放该数</span>
			count<span class="token punctuation">[</span>j<span class="token punctuation">]</span><span class="token operator">--</span><span class="token punctuation">;</span><span class="token comment">//该桶上的数减一</span>
		<span class="token punctuation">}</span>
		<span class="token keyword">for</span> <span class="token punctuation">(</span>i <span class="token operator">=</span> begin<span class="token punctuation">,</span> j <span class="token operator">=</span> <span class="token number">0</span><span class="token punctuation">;</span> i <span class="token operator">&lt;=</span> end<span class="token punctuation">;</span> i<span class="token operator">++</span><span class="token punctuation">,</span> j<span class="token operator">++</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
			<span class="token comment">//把bucket的数组导入arr中,相当于保留了这次桶排序</span>
			arr<span class="token punctuation">[</span>i<span class="token punctuation">]</span> <span class="token operator">=</span> bucket<span class="token punctuation">[</span>j<span class="token punctuation">]</span><span class="token punctuation">;</span>
		<span class="token punctuation">}</span>
	<span class="token punctuation">}</span>
<span class="token punctuation">}</span>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

P5 4.链表

基础第三课题目三:排序算法的稳定性及其汇总

在这里插入图片描述

不具备稳定性的例子:选择排序
在这里插入图片描述
快速排序:
在这里插入图片描述
只要有跨度的交换,就会丧失稳定性。
相邻交换的则不会。

具备稳定性的例子:冒泡排序
在这里插入图片描述
插入排序:
在这里插入图片描述
归并排序关键在于merge的时候,要先拷贝左边的数,而用归并解决小和问题的时候,要先拷贝右边的数,则丧失稳定性:
在这里插入图片描述
在这里插入图片描述
总结
在这里插入图片描述
下面都是没有必要的**改进
在这里插入图片描述
在这里插入图片描述
在快速排序中,当样本量小于60的时候,插入排序时间复杂度相当,当常数操作复杂度极低,因此可以将2种混合起来。
在这里插入图片描述

在这里插入图片描述

基础第四课题目一:哈希表的简单介绍

hashset 和 hashmap
在这里插入图片描述
String、Integer这些都算基础类型。

基础第四课题目二:有序表的简单介绍

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
把列表扔到栈,然后弹出一个比对一个
在这里插入图片描述
使用快慢指针,快指针结束的时候,慢指针走到中点。这个coding要练熟。

如果要使用低空间复杂度,使用改链表的方式,最后再恢复:
在这里插入图片描述
在这里插入图片描述

	// need O(1) extra space
	public static boolean isPalindrome3(Node head) {
		if (head == null || head.next == null) {
			return true;
		}
		Node n1 = head;//慢指针
		Node n2 = head;//快指针
		//快慢指针找末尾和中点
		while (n2.next != null && n2.next.next != null) { // find mid node
			n1 = n1.next; // n1 -> mid
			n2 = n2.next.next; // n2 -> end
		}
		n2 = n1.next; // n2 -> right part first node
		n1.next = null; // mid.next -> null
		Node n3 = null;//用于记录n2原本的下一个node
		//右半部分逆序
		while (n2 != null) { // right part convert
			n3 = n2.next; // n3 -> save next node,保留未改变的链表
			n2.next = n1; // next of right node convert,改变链表指向
			//n1,n2两个指针完成改变指向操作后,同时右移,准备下一个元素的链表指向逆序
			n1 = n2; // n1 move
			n2 = n3; // n2 move
		}
		n3 = n1; // n3 -> save last node
		n2 = head;// n2 -> left first node
		boolean res = true;
		while (n1 != null && n2 != null) { // check palindrome
			//每走一步,都验证
			if (n1.value != n2.value) {
				res = false;
				break;
			}
			//n1,n2从中间开始走
			n1 = n1.next; // left to mid
			n2 = n2.next; // right to mid
		}
		n1 = n3.next;
		n3.next = null;
		//最后将逆序的链表变回来
		while (n1 != null) { // recover list
			n2 = n1.next;
			n1.next = n3;
			n3 = n1;
			n1 = n2;
		}
		return res;
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

基础第四课题目九:按某值划分单向链表

在这里插入图片描述
笔试:创建node数组,把链表的node烤进去,再做partition,快速排序,即归并的3.0版本。

面试:使用6个变量指针,小于区域的头和尾,等于区域的头和尾,大于区域的头和尾,最后将3个区域连起来的时候,要注意是否有区域为空。
在这里插入图片描述
在这里插入图片描述

	public static Node listPartition2(Node head, int pivot) {
		Node sH = null; // small head
		Node sT = null; // small tail
		Node eH = null; // equal head
		Node eT = null; // equal tail
		Node bH = null; // big head
		Node bT = null; // big tail
		Node next = null; // save next node
		// every node distributed to three lists
		while (head != null) {
			next = head.next;
			head.next = null;
			if (head.value < pivot) {
				if (sH == null) {
					sH = head;
					sT = head;
				} else {
					sT.next = head;
					sT = head;
				}
			} else if (head.value == pivot) {
				if (eH == null) {
					eH = head;
					eT = head;
				} else {
					eT.next = head;
					eT = head;
				}
			} else {
				if (bH == null) {
					bH = head;
					bT = head;
				} else {
					bT.next = head;
					bT = head;
				}
			}
			head = next;
		}
		// small and equal reconnect
		if (sT != null) {
			sT.next = eH;
			eT = eT == null ? sT : eT;
		}
		// all reconnect
		if (eT != null) {
			eT.next = bH;
		}
		return sH != null ? sH : eH != null ? eH : bH;
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

基础第四课题目十:复制含有随机指针节点的链表

在这里插入图片描述
做法1:第一次遍历旧链表,使用哈希map,key为旧链表,value为新链表,新链表只是单纯地串起来并拷贝int value值,rand没有设置;第二次遍历旧链表,调用key-value,设置rand node。

做法2:第一次遍历旧链表,不用哈希map,在旧map中,插入克隆node,拷贝int value值;第二次遍历链表,一对一对处理,设置rand node;第三次遍历,把旧节点删除。省去了hashmap的空间。
在这里插入图片描述
在这里插入图片描述

P6 5.二叉树

基础第四课题目十一:两个单链表相交

在这里插入图片描述
leetcode142题。
判断有环还是无环:
使用额外空间方法:使用hashset,把元素放进集合,判断是否存在;
不使用额外空间的方法:使用快慢指针,快指针走到空,就是无环,快慢指针相遇,就是有环。快慢指针第一次相遇之后,将快指针重置由头开始,慢指针在相遇处,同时再次出发,相遇的地方,就是环的入口。
在这里插入图片描述
在这里插入图片描述
判断环入口节点代码:

	//获取环的入口
	public static Node getLoopNode(Node head) {
		if (head == null || head.next == null || head.next.next == null) {
			return null;
		}
		Node n1 = head.next; // n1 -> slow
		Node n2 = head.next.next; // n2 -> fast
		while (n1 != n2) {
			//判断快指针是否走完
			if (n2.next == null || n2.next.next == null) {
				return null;
			}
			n2 = n2.next.next;
			n1 = n1.next;
		}
		n2 = head; // n2 -> walk again from head
		while (n1 != n2) {
			n1 = n1.next;
			n2 = n2.next;
		}
		return n1;
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

情况1:2个链表都是无环,只可能是2条线,或者y型线,不可能是x型,x型就是节点处next指针指向2个地方,这是不可能的。2个链表如果相交,那么他们end端一定是地址一样的,2个链表都遍历。如果相交,要找到节点处,长的列表先走

    ∣
   
   
    l
   
   
    e
   
   
    
     n
    
    
     
      l
     
     
      o
     
     
      n
     
     
      g
     
    
   
   
    −
   
   
    l
   
   
    e
   
   
    
     n
    
    
     
      s
     
     
      h
     
     
      o
     
     
      r
     
     
      t
     
    
   
   
    ∣
   
  
  
   |len_{long}-len_{short}|
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.03611em; vertical-align: -0.286108em;"></span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right: 0.01968em;">l</span><span class="mord mathdefault">e</span><span class="mord"><span class="mord mathdefault">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.336108em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right: 0.01968em;">l</span><span class="mord mathdefault mtight">o</span><span class="mord mathdefault mtight">n</span><span class="mord mathdefault mtight" style="margin-right: 0.03588em;">g</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.286108em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault" style="margin-right: 0.01968em;">l</span><span class="mord mathdefault">e</span><span class="mord"><span class="mord mathdefault">n</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.336108em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">s</span><span class="mord mathdefault mtight">h</span><span class="mord mathdefault mtight">o</span><span class="mord mathdefault mtight" style="margin-right: 0.02778em;">r</span><span class="mord mathdefault mtight">t</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mord">∣</span></span></span></span></span> 步,然后一起走,一定会在交点处相遇。<br> <img src="https://img-blog.csdnimg.cn/59569be7cdf44a6dba35aa315fe53421.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASmVmZnJleUxlYWw=,size_20,color_FFFFFF,t_70,g_se,x_16" alt="在这里插入图片描述"></p> 

	public static Node noLoop(Node head1, Node head2) {
		if (head1 == null || head2 == null) {
			return null;
		}
		Node cur1 = head1;
		Node cur2 = head2;
		int n = 0;//用于记录长度,先记录链表1长度,然后
		//减去链表2的长度,差值的绝对值,就是长度差值
		while (cur1.next != null) {
			n++;
			cur1 = cur1.next;
		}
		while (cur2.next != null) {
			n--;
			cur2 = cur2.next;
		}
		if (cur1 != cur2) {
			return null;
		}
		cur1 = n > 0 ? head1 : head2;
		cur2 = cur1 == head1 ? head2 : head1;
		n = Math.abs(n);
		while (n != 0) {//长链表先走差值步
			n--;
			cur1 = cur1.next;
		}
		while (cur1 != cur2) {
			cur1 = cur1.next;
			cur2 = cur2.next;
		}
		return cur1;
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

情况2:一个为无环,一个有环,那么必然不想交;

情况3:2个都是有环,又分3种情况:
情况3-1:2个不同的有环;
情况3-2:入环节点是同一个,最好判断,分别找到入环节点,如果入环节点不同就是情况3-1或者3-3,如果入环节点相同,就使用上面的无环代码去找相交节点;
情况3-3:入环节点不是同一个;让loop1继续走,在走会自己之前,判断会不会遇到loop2这个入口节点,遇到就是情况3-3,没有就是情况3-1;
在这里插入图片描述

	//两个有环链表。返回第一个相交节点,如果不想交返回null
	//loop1,loop2分别为2个链表的环入口处节点
	public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
		Node cur1 = null;
		Node cur2 = null;
		if (loop1 == loop2) {//如果入环节点相同,是情况3-2
			cur1 = head1;
			cur2 = head2;
			int n = 0;
			while (cur1 != loop1) {
				n++;
				cur1 = cur1.next;
			}
			while (cur2 != loop2) {
				n--;
				cur2 = cur2.next;
			}
			cur1 = n > 0 ? head1 : head2;
			cur2 = cur1 == head1 ? head2 : head1;
			n = Math.abs(n);
			while (n != 0) {
				n--;
				cur1 = cur1.next;
			}
			while (cur1 != cur2) {
				cur1 = cur1.next;
				cur2 = cur2.next;
			}
			return cur1;
		} else {//如果入环节点不同,是情况3-1或3-3
			cur1 = loop1.next;
			while (cur1 != loop1) {
				if (cur1 == loop2) {
					return loop1;//情况3-3
				}
				cur1 = cur1.next;
			}
			return null;//情况3-1
		}
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

基础第五课题目一:二叉树节点结构

在这里插入图片描述
1:06:00附近解释先序中序后续,遍历会3次遇到同一个节点,第几次遇到时打印,就是什么序。

更详细的可以看代码随想录 刷题攻略 二叉树 笔记

递归代码:

	//先序遍历
	public static void preOrderRecur(Node head) {
		if (head == null) {
			return;
		}
		System.out.print(head.value + " ");
		preOrderRecur(head.left);
		preOrderRecur(head.right);
	}
	//中序遍历
	public static void inOrderRecur(Node head) {
		if (head == null) {
			return;
		}
		inOrderRecur(head.left);
		System.out.print(head.value + " ");
		inOrderRecur(head.right);
	}
	//后序遍历
	public static void posOrderRecur(Node head) {
		if (head == null) {
			return;
		}
		posOrderRecur(head.left);
		posOrderRecur(head.right);
		System.out.print(head.value + " ");
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

非递归遍历:
先序:
在这里插入图片描述
后续:
在这里插入图片描述

中序:
在这里插入图片描述

	//非递归先序遍历,头左右的顺序
	public static void preOrderUnRecur(Node head) {
		System.out.print("pre-order: ");
		if (head != null) {
			Stack<Node> stack = new Stack<Node>();
			stack.add(head);
			while (!stack.isEmpty()) {
				//1.弹出一个节点
				head = stack.pop();
				System.out.print(head.value + " ");
				//2.往栈加入节点,先右子节点后左子节点(如果有)
				if (head.right != null) {
					stack.push(head.right);
				}
				if (head.left != null) {
					stack.push(head.left);
				}
			}
		}
		System.out.println();
	}
	//非递归中序遍历,左头右的顺序
	public static void inOrderUnRecur(Node head) {
		System.out.print("in-order: ");
		if (head != null) {
			Stack<Node> stack = new Stack<Node>();
			while (!stack.isEmpty() || head != null) {
				if (head != null) {
					//1.所有的左子节点全部进栈
					stack.push(head);
					head = head.left;
				} else {
					//2.弹出栈一个节点,如果有右子节点,对右子节点周而复始上述操作
					head = stack.pop();
					System.out.print(head.value + " ");
					head = head.right;
				}
			}
		}
		System.out.println();
	}
	//非递归后序遍历,左右头的顺序
	public static void posOrderUnRecur1(Node head) {
		System.out.print("pos-order: ");
		if (head != null) {
			Stack<Node> s1 = new Stack<Node>();
			Stack<Node> s2 = new Stack<Node>();//收集栈
			s1.push(head);
			while (!s1.isEmpty()) {
				//1.从s1弹出一个节点,放入收集站s2
				head = s1.pop();
				s2.push(head);
				//2.先压左子节点进收集站,后压右子节点进收集站
				if (head.left != null) {
					s1.push(head.left);
				}
				if (head.right != null) {
					s1.push(head.right);
				}
			}
			while (!s2.isEmpty()) {
				System.out.print(s2.pop().value + " ");
			}
		}
		System.out.println();
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66

对中序的解释:先左再头再右,将右分解为先左后头。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
也叫层次遍历,使用队列而不是栈,队列是先进先出。
在这里插入图片描述
1:58:30附近,求最大宽度,方法1,使用hashmap
在这里插入图片描述
在这里插入图片描述

方法2,不使用hashmap,使用队列
在这里插入图片描述

对于二叉树来说,深度优先遍历就是先序遍历

P7 6. 图

基础第五课题目二:二叉树的相关概念及其实现判断

在这里插入图片描述

判断是否搜索二叉树

搜索二叉树,每个节点的左子节点及其子树都比自己小,右子节点及其子树都比自己大:
在这里插入图片描述
中序遍历,结果升序,就是搜索二叉树。把中序遍历的打印操作换成比较值的大小。
在这里插入图片描述

	public static boolean isBST(Node head) {
		if (head == null) {
			return true;
		}
		LinkedList<Node> inOrderList = new LinkedList<>();
		//保留中序次序
		process(head, inOrderList);
		int pre = Integer.MIN_VALUE;
		//遍历中序次序,看是否由小到大
		for (Node cur : inOrderList) {
			if (pre >= cur.value) {
				return false;
			}
			pre = cur.value;
		}
		return true;
	}
	//递归中序遍历,把原来的打印换成把节点添加到新列表,保留中序次序
	public static void process(Node node, LinkedList<Node> inOrderList) {
		if (node == null) {
			return;
		}
		process(node.left, inOrderList);
		inOrderList.add(node);
		process(node.right, inOrderList);
	}

 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

使用黑盒递归套路:
在这里插入图片描述
先更新最大最小值,再做违规判断,返回true or false:

	//黑盒子方法套路判断是否是搜索二叉树
	public static boolean isBST1(Node head) {
		return process(head).isBST;
	}
	//由于递归的返回值有3个,所有要构造一个类接受这3个返回值
	public static class ReturnType {
		public boolean isBST;//是否是搜索二叉树
		public int min;
		public int max;
	<span class="token keyword">public</span> <span class="token class-name">ReturnType</span><span class="token punctuation">(</span><span class="token keyword">boolean</span> isBST<span class="token punctuation">,</span> <span class="token keyword">int</span> min<span class="token punctuation">,</span> <span class="token keyword">int</span> max<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
		<span class="token keyword">this</span><span class="token punctuation">.</span>isBST <span class="token operator">=</span> isBST<span class="token punctuation">;</span>
		<span class="token keyword">this</span><span class="token punctuation">.</span>min <span class="token operator">=</span> min<span class="token punctuation">;</span>
		<span class="token keyword">this</span><span class="token punctuation">.</span>max <span class="token operator">=</span> max<span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
<span class="token punctuation">}</span>

<span class="token keyword">public</span> <span class="token keyword">static</span> <span class="token class-name">ReturnType</span> <span class="token function">process</span><span class="token punctuation">(</span><span class="token class-name">Node</span> x<span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
	<span class="token keyword">if</span> <span class="token punctuation">(</span>x <span class="token operator">==</span> <span class="token keyword">null</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span><span class="token comment">//base情况,空节点的返回值</span>
		<span class="token keyword">return</span> <span class="token keyword">null</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token class-name">ReturnType</span> leftData <span class="token operator">=</span> <span class="token function">process</span><span class="token punctuation">(</span>x<span class="token punctuation">.</span>left<span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token class-name">ReturnType</span> rightData <span class="token operator">=</span> <span class="token function">process</span><span class="token punctuation">(</span>x<span class="token punctuation">.</span>right<span class="token punctuation">)</span><span class="token punctuation">;</span>

	<span class="token keyword">int</span> min <span class="token operator">=</span> x<span class="token punctuation">.</span>value<span class="token punctuation">;</span>
	<span class="token keyword">int</span> max <span class="token operator">=</span> x<span class="token punctuation">.</span>value<span class="token punctuation">;</span>
	<span class="token comment">//先用子树的最大最小值更新此节点的最大最小值</span>
	<span class="token keyword">if</span><span class="token punctuation">(</span>leftData <span class="token operator">!=</span> <span class="token keyword">null</span><span class="token punctuation">)</span><span class="token punctuation">{<!-- --></span>
		min <span class="token operator">=</span> <span class="token class-name">Math</span><span class="token punctuation">.</span><span class="token function">min</span><span class="token punctuation">(</span>min<span class="token punctuation">,</span>leftData<span class="token punctuation">.</span>min<span class="token punctuation">)</span><span class="token punctuation">;</span>
		max <span class="token operator">=</span> <span class="token class-name">Math</span><span class="token punctuation">.</span><span class="token function">max</span><span class="token punctuation">(</span>max<span class="token punctuation">,</span>leftData<span class="token punctuation">.</span>max<span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">if</span><span class="token punctuation">(</span>rightData <span class="token operator">!=</span> <span class="token keyword">null</span><span class="token punctuation">)</span><span class="token punctuation">{<!-- --></span>
		min <span class="token operator">=</span> <span class="token class-name">Math</span><span class="token punctuation">.</span><span class="token function">min</span><span class="token punctuation">(</span>min<span class="token punctuation">,</span>rightData<span class="token punctuation">.</span>min<span class="token punctuation">)</span><span class="token punctuation">;</span>
		max <span class="token operator">=</span> <span class="token class-name">Math</span><span class="token punctuation">.</span><span class="token function">max</span><span class="token punctuation">(</span>max<span class="token punctuation">,</span>rightData<span class="token punctuation">.</span>max<span class="token punctuation">)</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>

	<span class="token keyword">boolean</span> isBST <span class="token operator">=</span> <span class="token boolean">true</span><span class="token punctuation">;</span>
	<span class="token comment">//判断子树是否违规,违规条件:</span>
	<span class="token comment">//违规情况1:左子树存在,且它的最大值大于父节点或者</span>
	<span class="token comment">//左子树不是搜索二叉树</span>
	<span class="token keyword">if</span><span class="token punctuation">(</span>leftData <span class="token operator">!=</span> <span class="token keyword">null</span> <span class="token operator">&amp;&amp;</span><span class="token punctuation">(</span><span class="token operator">!</span>leftData<span class="token punctuation">.</span>isBST <span class="token operator">||</span> leftData<span class="token punctuation">.</span>max <span class="token operator">&gt;=</span> x<span class="token punctuation">.</span>value<span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">{<!-- --></span>
		isBST <span class="token operator">=</span> <span class="token boolean">false</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token comment">//违规情况2:右子树存在,且它的最小值小于父节点或者</span>
	<span class="token comment">//右子树不是搜索二叉树</span>
	<span class="token keyword">if</span><span class="token punctuation">(</span>rightData <span class="token operator">!=</span> <span class="token keyword">null</span> <span class="token operator">&amp;&amp;</span><span class="token punctuation">(</span><span class="token operator">!</span>rightData<span class="token punctuation">.</span>isBST <span class="token operator">||</span> rightData<span class="token punctuation">.</span>max <span class="token operator">&lt;=</span> x<span class="token punctuation">.</span>value<span class="token punctuation">)</span><span class="token punctuation">)</span><span class="token punctuation">{<!-- --></span>
		isBST <span class="token operator">=</span> <span class="token boolean">false</span><span class="token punctuation">;</span>
	<span class="token punctuation">}</span>
	<span class="token keyword">return</span> <span class="token keyword">new</span> <span class="token class-name">ReturnType</span><span class="token punctuation">(</span>isBST<span class="token punctuation">,</span> min<span class="token punctuation">,</span>max<span class="token punctuation">)</span><span class="token punctuation">;</span>
<span class="token punctuation">}</span>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

判断是否完全二叉树

在这里插入图片描述

	//按宽度遍历,即按层遍历
	public static boolean isCBT(Node head) {
		if (head == null) {
			return true;
		}
		LinkedList<Node> queue = new LinkedList<>();
		boolean leaf = false;//用来记录是否出现过某个节点左右子节点不全的情况
		Node l = null;
		Node r = null;
		queue.add(head);
		while (!queue.isEmpty()) {
			head = queue.poll();
			l = head.left;
			r = head.right;
			if (
					//情况二,在不违反情况一的条件下,在首次出现
					//某个节点左右子节点不全的情况后,后续节点必
					//须都是叶节点,如果不满足,则返回false
					(leaf && (l != null || r != null)) 
				<span class="token operator">||</span>
				<span class="token comment">//情况一:右节点存在,左节点不存在,返回false</span>
				<span class="token punctuation">(</span>l <span class="token operator">==</span> <span class="token keyword">null</span> <span class="token operator">&amp;&amp;</span> r <span class="token operator">!=</span> <span class="token keyword">null</span><span class="token punctuation">)</span><span class="token punctuation">)</span> <span class="token punctuation">{<!-- --></span>
			<span class="token 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值