导语
本文将以老年智能护理为例解释如何使用Waylay平台结合不同的AI技术。该项目的核心目标是提供一种解决方案:向护理人员和家人确认他们所照顾的人员健康情况。下图介绍了所有相关的参与者。
在这个用例中存在很多挑战:
在任何时候,我们都需要掌握平台对老年人、看护人和家庭成员的建议;
不能简单地通过在整个地方添加传感器来训练网络;
我们想要应用的一些规则应该表达而不需要任何“学习”(使用启发式或看护人或老年人的愿望)
较少干预,但拥有“足够好”的规则让人们独立生活,同时为他们提供自由空间(例如,我们可以将摄像机放在房子的每个角落,但是谁愿意像那样生活?)
我们经常说:“数据不言自明”,所以,让我们看一下其中一次试验中得到了什么样的数据。我们将传感器放在冰箱、前门、橱柜、窗帘以及轮椅上。除了使用传感器数据之外,还选择了不同情况的老年人、看护人和家庭成员,通过使用该应用程序给他们共享图片和发送消息。以下是来自不同家庭的几个典型日子的直方图:
本文不详细介绍数据是如何处理的,我们直接查看这些直方图,其中的一些信息可以省去:
可以扣除人们在工作日或周末每天每个时段移动的可能性等;
可以减去人们使用不同对象的频率;
使用马尔可夫过程,可以估计一个人在不同房间之间移动的可能性;
可以扣除睡眠模式;
使用无监督聚类,可以对具有相似模式的老年人进行分组;
可以定期检查过去几周的移动模式是否与前一个时期相比是不寻常的,这可能是阿尔茨海默病的第一个迹象;
基于老年人和看护人输入规则
如前所述,应该用一些规则表达,而不需要任何“学习”。在该项目期间,Studio Dott提供了获取这些规则的好方法:
选择一个对象(冰箱,窗帘,壁橱,门等);
选择“何时”的状态(早上,晚上等);
如果对象在时间窗口中移动或不移动,则在工作日或周末移动;
超过或少于X次;
如果条件满足,则向个人发送短信和/或电子邮件;
找出老年人是否睡眠障碍
在下面的规则模板中,我们将运动传感器、似然传感器、日/夜传感器和每小时传感器组合在一起,以便推断出该人是否有睡眠问题。值得注意的是:我们观测的是运动情况,所以即使他们在夜间醒来,而且经常这样做,我们也不会将那个夜晚标记为睡眠问题。这样,我们只关注模式的变化。
一段时间后电器没有关闭
如果被看护人忘记关闭设备,我们可以在一段时间后发送警报(根据设备类型使用不同的时间段):
在该示例中,根据传感器输入和对象类型(如电视),Waylay会在设备开启且未再次关闭的情况下发送警报(确切的窗口可由延迟传感器控制)。如果在同一时间窗口内注册了多个开/关事件,将会丢弃。
建模马尔科夫链
马尔科夫链是一个随机过程,经历从一个状态到另一个状态的转换。
假设我们有一座四个房间的屋子,房间之间的连接如上图所示。每个房间的总移动概率应该等于1(用相同颜色标记)。这种方式建模的一个问题是转换表可能在一天内发生变化(注:这与马尔科夫链的“无记忆”特征不同,因为整个过程可能不仅取决于先前的状态)。
为此,我们使用简单事件关联(事件彼此接近的频率)和Waylay的驱动策略功能及与门。在这个动画中,我们可以看到如何获取一个人从卧室移动、走楼梯、通过卧室、打开冰箱的模式。在同一规则中,如果冰箱在上午11点之前没有打开过一次,将发送短信。
人工智能和物联网的结合
借助可以适用不同AI和ML技术的平台,可以使用以下信息:
实时事件
在时间序列数据库中获取历史数据
物体层面上的元模型(是电视机,热水锅炉的对象,或者如果水表在给定的区域/街道中,等等)
实时分析模块(与ML的连接用于培训参数,例如主动维护,目标定时时间等),这些函数可以在运行时通过插件界面进行更新
ML模型,如深度学习
来自第三方的API调用(用于通知,图像对象识别,NLP等)
结语
随着我国老龄化愈加的明显,智能看护机器人、智能护理应用程序应运而生。这些智能产品不再只是冷冰冰的机器,它能够像人类沟通、能够进行人类情感的分析,最主要的是,它能够从大量的数据中发现人们无法直接观察的信息,根据每个人的特殊指标进行有针对性的护理。
长按二维码 ▲
订阅「架构师小秘圈」公众号
如有启发,帮我点个在看,谢谢↓