为什么大公司一定要使用DevOps?

0 DevOps的意图


究竟什么是DevOps? 要想回答这个问题,首先要明确DevOps这个过程参与的人员是谁?即开发团队和IT运维团队!那么,DevOps的意图是什么呢?即在两个团队之间,建立良好的沟通和协作,更快更可靠的创建高质量软件!


事实上,并不是这两个团队之间的协作帮助交付了更好的软件,而是“开发”和“运维”团队之间的统一导致了软件的改进,并以更快的速度交付。我们不要忘记DevOps工具在实现自动化方面所扮演的角色。


开发和运维“一体”的感觉是由开发人员和操作工程师之间的技能组合和实践的桥接以及自动化(DevOps)工具的实现引起的。 世界各地的大型互联网公司已采用DevOps方法来彻底改进其性能,安全性和团队动态。 


在本篇文章中,让我们看看什么是DevOps,为什么它如此重要! 我们将首先跟踪导致DevOps的软件开发方法的演变,然后探索什么是DevOps及其生命周期,并通过评估世界顶级公司,来看看如何使用DevOps来获得益处。


1 软件开发的演变


多年来,DevOps从现有的软件开发策略/方法发展而来,以响应业务需求。让我们简要地看一下这些模型是如何演变的,以及它们最适合的场景。

640?wx_fmt=png

缓慢而繁琐的瀑布模型演变成敏捷,开发团队在短时间内完成软件开发,持续时间甚至不超过两周。如此短的发布周期帮助开发团队处理客户反馈,并将其与bug修复一起合并到下一个版本中。


虽然这种敏捷的SCRUM方法为开发带来了敏捷性,但它在运维方面却失去了敏捷实践的速度。开发人员和运维工程师之间缺乏协作仍然会减慢开发过程和发布。


DevOps方法就是基于对更好的协作和更快的交付的需求而产生的。DevOps允许用较少复杂问题的持续软件交付来修复和更快地解决问题。


现在我们已经了解了DevOps的发展,让我们来详细看看DevOps是什么。


2 什么是DevOps?


DevOps是一种软件开发方法,涉及软件在整个开发生命周期中的持续开发,持续测试,持续集成,持续部署和持续监控。 这些活动只能在DevOps中实现,而不是敏捷或瀑布,这就是为什么顶级互联网公司选择DevOps作为其业务目标的前进方向。 DevOps是在较短的开发周期内开发高质量软件的首选方法,可以提高客户满意度。 


在不了解DevOps生命周期的情况下,对DevOps的理解也会片面化。现在让我们看看DevOps生命周期,并探讨它们如何与下图所示的软件开发阶段相关联。


640?wx_fmt=jpeg


持续开发:

这是DevOps生命周期中软件不断开发的阶段。与瀑布模型不同的是,软件可交付成果被分解为短开发周期的多个任务节点,在很短的时间内开发并交付。


这个阶段包括编码和构建阶段,并使用Git和SVN等工具来维护不同版本的代码,以及Ant、Maven、Gradle等工具来构建/打包代码到可执行文件中,这些文件可以转发给自动化测试系统进行测试。


持续测试:


在这个阶段,开发的软件将被持续地测试bug。对于持续测试,使用自动化测试工具,如Selenium、TestNG、JUnit等。这些工具允许质量管理系统完全并行地测试多个代码库,以确保功能中没有缺陷。在这个阶段,使用Docker容器实时模拟“测试环境”也是首选。一旦代码测试通过,它就会不断地与现有代码集成。


持续集成:


这是支持新功能的代码与现有代码集成的阶段。由于软件在不断地开发,更新后的代码需要不断地集成,并顺利地与系统集成,以反映对最终用户的需求更改。更改后的代码,还应该确保运行时环境中没有错误,允许我们测试更改并检查它如何与其他更改发生反应。


Jenkins是一个非常流行的用于持续集成的工具。使用Jenkins,可以从git存储库提取最新的代码修订,并生成一个构建,最终可以部署到测试或生产服务器。可以将其设置为在git存储库中发生更改时自动触发新构建,也可以在单击按钮时手动触发。


持续部署:

它是将代码部署到生产环境的阶段。 在这里,我们确保在所有服务器上正确部署代码。 如果添加了任何功能或引入了新功能,那么应该准备好迎接更多的网站流量。 因此,系统运维人员还有责任扩展服务器以容纳更多用户。


由于新代码是连续部署的,因此配置管理工具可以快速,频繁地执行任务。 Puppet,Chef,SaltStack和Ansible是这个阶段使用的一些流行工具。


容器化工具在部署阶段也发挥着重要作用。 Docker和Vagrant是流行的工具,有助于在开发,测试,登台和生产环境中实现一致性。 除此之外,它们还有助于轻松扩展和缩小实例。


持续监控:

这是DevOps生命周期中非常关键的阶段,旨在通过监控软件的性能来提高软件的质量。这种做法涉及运营团队的参与,他们将监视用户活动中的错误/系统的任何不正当行为。这也可以通过使用专用监控工具来实现,该工具将持续监控应用程序性能并突出问题。


使用的一些流行工具是Splunk,ELK Stack,Nagios,NewRelic和Sensu。这些工具可帮助密切监视应用程序和服务器,以主动检查系统的运行状况。它们还可以提高生产率并提高系统的可靠性,从而降低IT支持成本。发现的任何重大问题都可以向开发团队报告,以便可以在持续开发阶段进行修复。


这些DevOps阶段连续循环进行,直到达到所需的产品质量。下面的图表将显示可以在DevOps生命周期的哪个阶段使用哪些工具。

640?wx_fmt=jpeg


既然我们已经确定了DevOps的重要性,并且了解了它的不同阶段以及所涉及的DevOps工具,现在让我们看看Facebook的一个案例研究,并理解为什么他们从敏捷转向DevOps。我们将采用Facebook曾推出的新特性的用例,这些新特性导致Facebook重新评估其产品交付并采用DevOps方法。

3 DevOps案例研究

曾经,Facebook向遍布全球的若干亿用户推出了一系列新功能 - 时间轴,推荐和音乐功能。 发布后Facebook上产生的巨大流量导致服务器崩溃。 推出的功能获得了用户的大规模超常规响应,这导致了新功能产生了不可控的结果,使他们没有预料到。

640?wx_fmt=jpeg

这导致了Facebook重新评估和战略调整,从而使Facebook推出了暗启动技术。 使用DevOps原则,Facebook为其新版本的发布创建了以下方法。

640?wx_fmt=jpeg

Facebook暗启动技术

暗启动是在新功能完全发布给所有用户之前,逐步将新功能,推广到选定的一组用户的过程。 这允许开发团队尽早获得用户反馈,测试错误,并且还可以测试基础架构性能。 这种发布方法是持续交付的直接结果,有助于实现更快,更迭代的版本,确保应用程序性能不会受到影响,并且用户可以很好地更新该版本。

640?wx_fmt=jpeg

在暗启动技术中,新功能通过专用的部署管道发布给小型用户群。 在上面给出的Facebook暗启动图表中,您可以看到只打开了一个部署管道,将新功能部署到一组选定用户。 此时剩余的数百条管道全部关闭。


持续监视部署功能的特定用户群,以收集反馈并识别错误。 这些错误和反馈将被纳入开发,测试和部署在同一用户群中,直到功能变得稳定。 一旦实现稳定性,通过启用其他部署管道,将逐步在其他用户群上部署这些功能。


Facebook通过将代码包装在功能标记或功能切换中来实现此目的,该切换用于控制谁可以看到新功能以及何时查看。与此同时,模拟向用户启动代码的全部效果,在向用户开放全部功能之前,可以及早的暴露应用程序基础架构的痛点和区域,功能稳定后,将通过多个版本将其部署到其余用户。


通过这种方式,Facebook拥有一个受控或稳定的机制,可以为其庞大的用户群开发新功能。相反,如果功能没有得到很好的响应,他们可以选择完全回滚部署。这也帮助他们为部署准备服务器,因为他们可以预测网站上的用户活动,并相应地扩展服务器。上面给出的图表描述了Facebook的暗启动过程。

4 总结


微信,淘宝,以及许多领先的科技巨头,在向所有人发布之前,都使用暗发布逐渐向一小部分用户发布和测试新功能。


DevOps的目的是更快速,更可靠地创建质量更好的软件,同时开发,运维团队之间进行更多的沟通和协作。 它是一个自动化过程,允许快速,安全和高质量的软件开发和发布,同时保持所有利益相关者在一个循环中。 这就是DevOps获得越来越多的大型互联网公司青睐的真正原因。

陛下...看完奏折,点个赞再走吧!

640?wx_fmt=png

<think>好的,我现在需要给用户介绍一下DevOps。用户之前已经问过DBA,现在转向DevOps,可能是在技术领域继续深入,或者对IT运维和开发流程感兴趣。首先,我要确保自己对DevOps有全面的理解,包括它的定义、核心原则、常用工具链、文化理念以及与相关概念的对比。 用户可能想知道DevOps是什么,为什么重要,以及如何实施。考虑到用户之前询问的是DBA,可能有一定的技术背景,所以需要适当深入技术细节,但也要保持解释的易懂性。需要分结构回答,可能包括定义、核心原则、工具链、实施步骤、优势与挑战、相关职位等部分。 需要确认是否存在其他可能的“DevOps”解释,但通常来说,DevOps主要指软件开发与运维的结合。因此,应专注于这一领域。同时,要避免使用过于专业的术语,或者在必要时进行解释。例如,CI/CD、自动化部署等概念需要简要说明。 另外,用户可能希望了解DevOps如何影响企业或团队的工作流程,以及学习DevOps需要哪些技能。可能需要推荐一些工具或学习资源,比如Jenkins、Docker、Kubernetes等,但要注意不过度展开,保持回答的简洁性。 需要检查是否有常见的误区需要澄清,比如DevOps不仅仅是工具的使用,更是一种文化和流程的转变。还要提到它与敏捷开发的关系,以及如何促进团队协作。 最后,确保回答结构清晰,使用标题和列表来组织内容,便于用户快速浏览。同时,保持口语化,避免过于生硬的技术描述。可能需要用例子来说明,比如自动化测试如何提升效率,或者持续集成如何减少集成问题。 总结步骤:定义、核心原则、工具链、实施步骤、优势挑战、相关职位、学习资源。每个部分需要简明扼要,重点突出。同时,考虑到用户可能有进一步的问题,最后可以邀请用户提出更具体的问题。</think>以下是关于 **DevOps** 的详细介绍,涵盖核心理念、技术栈、实践场景及发展趋势: --- ### 一、定义与核心理念 **DevOps** = **Dev**(开发) + **Ops**(运维) 通过**自动化工具**与**协作文化**,打破开发与运维的壁垒,实现软件**快速交付**与**高质量运行**。 #### 核心原则(CAMS模型): 1. **Culture**(文化) - 强调跨团队协作(如每日站会同步进度) - 责任共担(开发需关注线上日志,运维参与架构设计) 2. **Automation**(自动化) - CI/CD流水线(从代码提交到生产部署全自动) - 基础设施即代码(Infrastructure as Code, IaC) 3. **Measurement**(度量) - 监控关键指标(如部署频率、故障恢复时间 MTTR) - 使用仪表盘可视化(如 Grafana 展示服务健康状态) 4. **Sharing**(共享) - 知识库文档化(Confluence 记录故障处理手册) - 工具链标准化(团队统一使用 Jenkins 而非多个构建工具) --- ### 二、技术栈与工具链 #### 典型工具分类: | 功能领域 | 代表工具 | 应用场景示例 | |-------------------|-------------------------------------|---------------------------------| | **版本控制** | Git, GitHub, GitLab | 代码协作与分支管理 | | **持续集成** | Jenkins, CircleCI, Travis CI | 自动运行单元测试(如 JUnit) | | **配置管理** | Ansible, Chef, Puppet | 批量服务器环境标准化部署 | | **容器化** | Docker, containerd | 打包应用及其依赖为镜像(Dockerfile)| | **编排调度** | Kubernetes, Docker Swarm | 自动扩缩容(HPA 根据 CPU 负载调整) | | **监控告警** | Prometheus, ELK Stack, Zabbix | 实时检测微服务延迟(如 P99 指标) | | **云平台** | AWS, Azure, GCP | 弹性部署 Serverless 函数(AWS Lambda)| #### 技术演进示例: ```bash # 传统部署 vs DevOps 部署对比 传统流程: 手工上传 WAR 包 → 手动修改 Tomcat 配置 → 逐台服务器重启 DevOps 流程: git push → 触发 Jenkins 构建 → 运行 SonarQube 代码扫描 → 生成 Docker 镜像 → Kubernetes 滚动更新 → 自动回滚(若健康检查失败) ``` --- ### 三、关键实践场景 #### 1. 持续交付流水线(CI/CD Pipeline) - **开发阶段**: 代码提交触发自动化测试(单元测试覆盖率需 >80%) 代码质量门禁(SonarQube 检测代码异味) - **预发环境**: 蓝绿部署(新旧版本并存,逐步切流) 混沌工程测试(模拟网络分区验证系统容错性) - **生产环境**: 金丝雀发布(先对 5% 用户开放新功能) 实时监控反馈(如 New Relic 追踪 API 错误率) #### 2. 基础设施即代码(IaC) - 使用 Terraform 定义 AWS 资源: ```hcl resource "aws_instance" "web" { ami = "ami-0c55b159cbfafe1f0" instance_type = "t3.micro" tags = { Name = "DevOps-Demo" } } ``` - 版本化基础设施变更(Git 记录每次架构调整) #### 3. 云原生转型 - 微服务架构(Spring Cloud/Dubbo) - 服务网格(Istio 实现流量控制与链路追踪) - 无服务器计算(AWS Lambda 处理突发流量) --- ### 四、实施 DevOps 的挑战 1. **组织阻力** - 传统运维团队担心被自动化取代 - 开发人员需适应 On-Call 轮值制度 2. **技术债务** - 遗留系统难以容器化(如老旧 Cobol 程序) - 多环境配置差异导致部署失败 3. **安全合规** - CI/CD 管道中需嵌入安全扫描(如 Trivy 检测镜像漏洞) - 审计流水线操作记录(满足 GDPR 等法规要求) --- ### 五、相关职位与技能要求 | 职位类型 | 核心技能要求 | 典型工作任务 | |------------------|--------------------------------------|--------------------------------| | DevOps 工程师 | CI/CD 设计、Kubernetes 集群运维 | 优化构建耗时(从 30 分钟缩短到 5 分钟) | | 云架构师 | 多云架构设计、成本优化 | 设计高可用跨区域容灾方案 | | SRE(站点可靠性工程师) | 制定 SLA/SLO、容量规划 | 通过错误预算(Error Budget)平衡稳定性与迭代速度 | --- ### 六、学习路径建议 1. **基础阶段** - 掌握 Linux 基础(Shell 脚本编写) - 学习 Git 分支管理策略(Git Flow) 2. **中级阶段** - 实践 Jenkins Pipeline 脚本(Groovy 语法) - 部署 Kubernetes 集群(kubeadm 或 Minikube) 3. **高阶方向** - 研究 Service Mesh(如 Istio 流量镜像) - 构建全链路监控体系(OpenTelemetry 标准化埋点) --- 如果需要了解 DevOps 在特定场景的应用(如金融行业合规性实践),或某工具(如 ArgoCD)的深度用法,欢迎进一步提问!
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值