题解 世界树的考验
题目描述
具体做法与心路历程
考试时的心情:懵逼.jpg
二分答案走一波,不行不行,边权这么小,这复杂度太底了。
那么考虑 D P DP DP?感 j i o jio jio无法满足后效性。。
最后瞎写了个 20 p t s 20pts 20pts的算法,喜提 0 0 0分。。
具体做法
我还是太菜了
又是一个小技巧。这种边权异或的题目,我们往往可以把点权设为其周围所有边的边权的异或和。
在这道题中使所有边权为0
与现在使所有点权为0
是等价的。
证明:考虑度数为1的点,因为其点权为0,那么其相邻的那一条边边权也必然为0,删去这条边与
这个点。持续这样删边,使最终只剩一个点,得证。
这样转换成点权后每次操作即可看成修改两个点的点权了:因为对于路径上的点而言,这条路径要经过它相邻的两条边,所以可以忽略。
那么我们首先可以抵消掉点权相同的,最后还剩下一些点权互不相同的点。对剩下的点的权值我们可以用一个状态 S S S来表示: S S S的第 i i i位表示还有点权为 i i i的点存在。设 f S f_S fS表示从状态 0 0 0变成状态 S S S的最小操作次数。 D P DP DP即可。
C o d e \mathcal{Code} Code
/*******************************
Author:galaxy yr
LANG:C++
Created Time:2019年11月05日 星期二 16时30分57秒
*******************************/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct IO{
template<typename T>
IO & operator>>(T&res)
{
T q=1;char ch;
while((ch=getchar())<'0' or ch>'9')if(ch=='-')q=-q;
res=(ch^48);
while((ch=getchar())>='0' and ch<='9') res=(res<<1)+(res<<3)+(ch^48);
res*=q;
return *this;
}
}cin;
const int maxn=1e5+10;
const int m=(1<<16)+10;
int n,f[m],sum[20],inf,ans,S,w[maxn];
int dfs(int S)
{
if(!S) return 0;
if(f[S]!=inf) return f[S];
for(int i=0;i<16;i++)
if((S>>i)&1)
{
for(int j=0;j<16;j++)
if(i!=j && ((S>>j)&1))
{
int p=i^j,x=S^(1<<i)^(1<<j)^(1<<p);
f[S]=min(f[S],dfs(x)+1+((S>>p)&1));
}
}
return f[S];
}
int main()
{
//freopen("trial.in","r",stdin);
//freopen("trial.out","w",stdout);
cin>>n;
int u,v,z;
for(int i=1;i<n;i++)
{
cin>>u>>v>>z;
w[u]^=z,w[v]^=z;
}
for(int i=0;i<n;i++) sum[w[i]]++;
for(int i=1;i<16;i++)
ans+=(sum[i]>>1),S+=(1<<i)*(sum[i]&1);
memset(f,127,sizeof f); inf=f[0];
printf("%d\n",ans+dfs(S));
return 0;
}