题解 蓝精灵的请求
题目描述
具体做法与心路历程
考试时想了想,只想出了前面 60 p t s 60pts 60pts,考完只有 40 p t s 40pts 40pts(判错了)。觉得思路还是没有正确,一坨浆糊。
具体做法
题目大意:把图分成两个完全图,且两个完全图直接的点数差尽量少。
考虑把没有关系的蓝精灵之间连边,建出补图。它应该是若干个联通块。
对于每一个联通块,因为如果两点之间没有连边,它们实际上是有边的,所以我们这个图应该是一个二分图。
我们把联通块进行染色,同色之间一定可以构成一个完全图,一个联通块里的点对其他联通块的点都有边。我们对每个联通块染色,然后考虑把所有的点合并成两个完全图,这个部分可以用背包解决。
C o d e \mathcal{Code} Code
/*******************************
Author:galaxy yr
LANG:C++
Created Time:2019年11月05日 星期二 20时03分50秒
*******************************/
#include<cstdio>
#include<algorithm>
using namespace std;
struct IO{
template<typename T>
IO & operator>>(T&res)
{
T q=1;char ch;
while((ch=getchar())<'0' or ch>'9')if(ch=='-')q=-q;
res=(ch^48);
while((ch=getchar())>='0' and ch<='9') res=(res<<1)+(res<<3)+(ch^48);
res*=q;
return *this;
}
}cin;
struct edge{
int to,next;
edge(int a=0,int b=0):to(a),next(b){}
};
const int maxn=1e6+10;
const int Maxn=1005;
const int inf=0x7fffffff;
int n,m,head[Maxn],cnt,c0,c1,ans=inf,col[Maxn];
bool vis[maxn],v[Maxn][Maxn],f[2][Maxn];
edge e[maxn];
void add(int u,int v)
{
e[++cnt]=edge(v,head[u]);
head[u]=cnt;
}
bool dfs(int now,int c)
{
col[now]=c;
vis[now]=1;
if(c) ++c1;
else ++c0;
for(int i=head[now];i;i=e[i].next)
if((vis[e[i].to] && col[e[i].to]==col[now]) || (!vis[e[i].to] && !dfs(e[i].to,c^1)))
return false;
return true;
}
int count(int x)
{
return x*(x-1)/2+(n-x)*(n-x-1)/2;
}
int main()
{
//freopen("request.in","r",stdin);
//freopen("request.out","w",stdout);
cin>>n>>m;
for(int i=1;i<=m;i++)
{
int a,b;
cin>>a>>b;
v[a][b]=v[b][a]=1;
}
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(!v[i][j])
add(i,j),add(j,i);
int now=0,pre=1;
f[now][0]=1;
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
c0=c1=0;
if(!dfs(i,1))
return (!printf("-1\n"));
now^=1,pre^=1;
for(int j=0;j<=n;j++)
f[now][j]=0;
for(int j=n;j>=c0;j--)
f[now][j]|=f[pre][j-c0];
for(int j=n;j>=c1;j--)
f[now][j]|=f[pre][j-c1];
}
}
for(int i=1;i<=n;i++)
if(f[now][i])
ans=min(ans,count(i));
printf("%d\n",ans);
return 0;
}