Pytorch学习系列
骚火棍
这个作者很懒,什么都没留下…
展开
-
Pytorch多显卡训练
参考链接:https://blog.csdn.net/leviopku/article/details/109318226转载 2022-09-27 16:23:08 · 240 阅读 · 0 评论 -
Pytorch学习系列-04-构建卷积神经网络实现CIFAR-10图片分类
对CIFAR-10数据集进行图像分类。数据集中的图像大小为32x32x3。定义卷积神经网络的结构这里,将定义一个CNN的结构。将包括以下内容:(1)卷积层:可以认为是利用图像的多个滤波器(经常被称为卷积操作)进行滤波,得到图像的特征。(2)通常,我们在 PyTorch 中使用 nn.Conv2d 定义卷积层,并指定以下参数:nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0)(3)池化层:这里采用的最大池化.原创 2020-09-21 00:23:49 · 2600 阅读 · 0 评论 -
Pytorch学习系列-03-构建卷积神经网络实现手写数字识别(Mnist数据集)
涉及到主要知识点是如何使用torch.nn.Module这个基类来实现一个网络结构定义。这个基类中最重要的是实现自己的forward方法,这个也是自定义网络结构的实现方法。保存了模型之后,还可以转化为ONNX格式,把模型送给OpenCV DNN模块调用。1.网络训练、验证及模型导出与转换代码:import torchfrom torch.utils.data import DataLoaderimport torchvision#预处理数据transfrom = torchvision..原创 2020-09-20 08:59:08 · 844 阅读 · 1 评论 -
Pytorch学习系列-02-构建浅层神经网络实现手写数字识别(Mnist数据集)
Pytorch搭建简单神经网络完成手写数字识别,其中利用到的知识点如下:(1)用torch.nn包里面的函数搭建网络(2)Torchvision.transofrms来做数据预处理(3)DataLoader简单调用处理数据集(4)模型保存为pt文件与加载调用下面看完整的代码:"""1.使用torch.nn包里面的搭建网络2.Torchvision.transofrms来做数据处理3.DataLoader简单调用处理数据集4.模型保存为pt文件与加载调用"""import tor.原创 2020-09-19 17:38:29 · 417 阅读 · 0 评论 -
Pytorch学习系列-01-环境搭建与基本语法
环境搭建参考如下链接就好:https://pytorch.org/Pytorch基本语法1.导入库,查看torch版本from __future__ import print_functionimport torchimport numpy as npprint (torch.__version__)1.5.0+cpu2.定义矩阵#定义矩阵x = torch.empty(2,2)print (x)tensor([[-6.2004e+22, 4.5916e-41]..原创 2020-09-15 23:28:42 · 227 阅读 · 0 评论