A - 加农炮(线段树)单点更新

A - 加农炮

一个长度为M的正整数数组A,表示从左向右的地形高度。测试一种加农炮,炮弹平行于地面从左向右飞行,高度为H,如果某处地形的高度大于等于炮弹飞行的高度H(A i >= H),炮弹会被挡住并落在i - 1处,则A i1 + 1。如果H <= A 0 ,则这个炮弹无效,如果H > 所有的A i

,这个炮弹也无效。现在给定N个整数的数组B代表炮弹高度,计算出最后地形的样子。
例如:地形高度A = {1, 2, 0, 4, 3, 2, 1, 5, 7}, 炮弹高度B = {2, 8, 0, 7, 6, 5, 3, 4, 5, 6, 5},最终得到的地形高度为:{2, 2, 2, 4, 3, 3, 5, 6, 7}。
Input
第1行:2个数M, N中间用空格分隔,分别为数组A和B的长度(1 <= m, n <= 50000)
第2至M + 1行:每行1个数,表示对应的地形高度(0 <= A i <= 1000000)。
第M + 2至N + M + 1行,每行1个数,表示炮弹的高度(0 <= B i
<= 1000000)。
Output
输出共M行,每行一个数,对应最终的地形高度。
Sample Input
9 11
1
2
0
4
3
2
1
5
7
2
8
0
7
6
5
3
4
5
6
5
Sample Output
2
2
2
4
3
3
5
6
7


代码 :

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
using namespace std;
#define maxn 50005
struct node
{
    int l;
    int r;
    int val;
}tree[maxn*4];
int dixing[1000005];
int n,m;
int t;
void build(int k,int l,int r)
{
   tree[k].l=l;
   tree[k].r=r;
   if(l==r)
   {
       tree[k].val=dixing[tree[k].l];
       return;
   }
   int mid=(l+r)/2;
   build(k<<1,l,mid);
   build(k<<1|1,mid+1,r);
   tree[k].val=max(tree[k<<1].val,tree[k<<1|1].val);
}

void tttt(int k,int hh)
{
   if(tree[k].l==hh&&tree[k].r==hh)
   {
   	tree[k].val++;
   	return;
   }
   if(hh<=tree[k*2].r)
   tttt(k*2,hh);
   else 
   tttt(k*2+1,hh);
   tree[k].val=max(tree[k<<1].val,tree[k<<1|1].val);
}
void update(int k,int pos)
{
	if(pos<=dixing[1])return;
	if(pos>tree[1].val)return;//&&pos<=tree[1].val&&pos>dixing[1]
	if(tree[k].l==tree[k].r&&tree[k].val>=pos)
	{
		tttt(1,tree[k].l-1);
		dixing[tree[k].l-1]++;
		return;
	}
	if(tree[k<<1].val>=pos)
	update(k<<1,pos);
	else 
	update(k<<1|1,pos);
	tree[k].val=max(tree[k<<1].val,tree[k<<1|1].val);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    scanf("%d",&dixing[i]);
    build(1,1,n);
    int a;
    for(int i=1;i<=m;i++)
    {
    	scanf("%d",&a);
    	update(1,a);
    }
    for(int i=1;i<=n;i++)
    printf("%d\n",dixing[i]);
	return 0;
}



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值