逐位逼近法计算对数的小数部分

逐位逼近法(Bit-by-Bit Approximation)是一种通过 迭代和位操作 高效计算数学函数(如对数、平方根等)的方法。它特别适用于 不支持浮点运算的环境(如区块链智能合约),因为所有计算均通过 整数乘法、位移和比较完成。

本文只介绍其数学推导。

假设我们要计算\log_{2}1.2,显然其结果是小于1的,接下来我们来推导其结算过程。

假设0.b1b2b3b4=\log_{2}1.2,这里的0.b1b2b3b4是一个二进制的数字也就是说bn\epsilon [0,1]

两边同时乘以2得到b1.b2b3b4=\log_{2}1.2^{^{2}}
也就是说b1.b2b3b4=\log_{2}1.44

由于1.44<2^{_{1}} , 所以b1.b2b3b4<1,得出b1=0
继而得出0.b2b3b4=\log_{2}1.44
继续两边同时乘以2得出:b2.b3b4=\log_{2}1.44^{^{2}}=\log_{2}2.0736
2^{1}<2.0736所以b2.b3b4>1,得出b2=1
接下来1.b3b4=\log_{2}2.0736
也就是说2^{1.b3b4}=2.0736  ====>  2^{_{1+0.b3b4}}=2.0736  ,我们两边同时除以2得到2^{_{0.b3b4}}=1.0368

0.b3b4=\log_{2}1.0368
继续前面的步骤:
b3.b4=\log_{2}1.07495424 也就是说b3=0
接下来按照前面的计算b4也为0
也就是说\log_{2}1.2的结果约为二进制的0.01也就是十进制的0.25

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值