自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Thinkgamer博客

《推荐系统开发实战》作者,「搜索与推荐Wiki」公号负责人,CyanScikit科技创始人...

原创 你想要的【技术服务】和【商务合作】都在这里了,点击查看详情!

合作范围 Web全栈 数据服务 :-: :-: 论文算法实现 大数据服务 :-: :-: 跟拍摄影 广告接入 全网唯一ID:Thinkgamer,左侧”关于我“关注微信公众号”数...

2020-03-18 19:18:29 2911 0

原创 你要听听我和处女作《推荐系统开发实战》的故事吗

结缘编辑 我不知道是怎样的巧合,让吴老师(此书的编辑)在茫茫人海之中找到了我,我也不知道是谁给我的勇气让我答应去写作这本书。只知道我头脑发热之后的无数个夜晚和周末都被写作占据了,我期待的诗和远方也被我藏在角落里,直到初版书稿完成后才悄然拿起,带着我的小毛驴游历四方。 我想大概也许是因为CSDN博客...

2019-08-12 09:06:12 2336 9

原创 晓得嘛?混合推荐系统速览和技巧锦囊
原力计划

本文为《推荐系统与深度学习》第五章的复习笔记,只记录了一些要点,希望能够快速的进行复习,如果发现哪一个点不明白的话,可以自行展开学习或者加小编微信进行技术交流。 5.1 什么是混合推荐系统 混合推荐系统的含义 海量数据推荐系统中通常存在三部分: 在线系统(Online) 直接与用户进行交互,...

2020-05-20 14:50:09 301 0

原创 算法工程师的数学基础|信息论
原力计划

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1、算法工程师的数学基础|线性代数中的向量和向量空间 2、算法工程师的数学基础|线性代数中的矩阵 3、算法...

2020-05-17 23:37:34 183 0

原创 虽然简单但确不能不会的推荐算法重点回顾
原力计划

本文为《推荐系统与深度学习》第四章的复习笔记,只记录了一些要点,希望能够快速的进行复习,如果发现哪一个点不明白的话,可以自行展开学习。 4.1 基于内容的推荐算法 基于内容的推荐算法步骤: 特征(内容)提取 用户偏好计算 内容召回(召回用户偏好的top K) 物品排序(可以根据top K中其他...

2020-05-11 17:10:05 142 0

原创 论文|AGREE-基于注意力机制的群组推荐,含代码(Attentive Group Recommendation)
原力计划

这篇文章主要分享的论文是2018年被CCF收录的一篇论文:Attentive Group Recommendation(基于注意力机制的群组推荐),第一作者是湖南大学的曹达老师,二作是论文Neural Collaborative Filtering的作者何老师。当然也会结合小编的工作来进行一些补充...

2020-04-24 11:56:26 420 0

原创 算法工程师的数学基础|概率论
原力计划

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1、算法工程师的数学基础|线性代数中的向量和向量空间 1.2、算法工程师的数学基础|线性代数中的向量内积和...

2020-04-17 10:44:47 231 0

原创 论文|组推荐系统及其应用研究
原力计划

这篇文章主要是普及一下群组推荐系统,众所周知,推荐系统已经应用十分广泛,群组推荐的应用不仅老用户上发挥了极大的作用,在新用户的冷启动上也发挥了很大的作用。 由于后续会有一篇文章介绍结合深度学习的群组推荐,所以这里先借用该篇论文,借花献佛,介绍一下群组推荐系统和其应用。 本文中所涉及的内容算是比较老...

2020-04-13 21:50:16 360 0

原创 算法工程师的数学基础|线性代数中的向量内积和外积概念及几何意义
原力计划

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1.1、算法工程师的数学基础|线性代数中的向量和向量空间 1.2、算法工程师的数学基础|线性代数中的向量内...

2020-04-07 13:43:32 228 0

原创 算法工程师的数学基础|数学优化类型和优化算法

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1、算法工程师的数学基础|线性代数中的向量和向量空间 2、算法工程师的数学基础|线性代数中的矩阵 3、算法...

2020-04-01 11:27:44 397 0

原创 算法工程师的数学基础|微积分之积分相关介绍

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1、算法工程师的数学基础|线性代数中的向量和向量空间 2、算法工程师的数学基础|线性代数中的矩阵 3、算法...

2020-03-27 10:14:18 156 0

原创 论文|被“玩烂”了的协同过滤加上神经网络怎么搞?

相信熟悉推荐系统的同学对于协同过滤(Collaborative Filtering)已经熟悉的不能再熟悉了,我也相信很多人心里在想“这么简单的协同,都2020年了,谁还用呀”。 俗话说得好,人不可貌相,海水不可斗量!CF作为最早的推荐算法,基于CF的改进在学术界和工业界应用的十分广泛,就在之前介绍...

2020-03-23 14:34:58 546 0

原创 LTR|怎么理解基于机器学习“四大支柱”划分的学习排序方法
原力计划

Learning to rank(LTR,L2R)也叫排序学习,泛指机器学习中任何用户排序的技术,是指一类监督学习(Supervised Learning)排序算法。 LTR被应用在很多领域,比如信息检索(Information Retrieval)、推荐系统(Recommend System)、...

2020-03-21 14:02:44 387 2

原创 2019全球人工智能技术峰会PDF资料拿走不谢

2019 全球人工智能技术峰会PDF资料免费分享,资料内容涵盖各个方面,全部都是一线互联网公司的产业实践。 工业实践 「百度」源于产业实践的开源深度学习平台飞浆(PaddlePaddle) 「易观」如何建设大数据中台(从0到1建设大数据中台) 「华为」云边协同,重新定义AI 机器学习 「网...

2020-03-18 19:19:08 3531 0

原创 怎么才能够坚持做一件事并且把它做好?

好久没写过碎言碎语的文章了,一直都是更新技术文章,那么今天就换换口味,聊一聊近况和想法。 自从回北京之后,就一直在家办公,十几平方的卧室内支撑着北漂的身体和灵魂,我相信这不是我一个人的情况,而是无数在异国他乡追求自己理想的人的缩影。 来北京工作的人无非就两种想法,第一:追求梦想,实现人生价值,可能...

2020-03-16 09:05:11 3845 7

原创 算法工程师的数学基础|微积分之微分相关介绍

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1、算法工程师的数学基础|线性代数中的向量和向量空间 2、算法工程师的数学基础|线性代数中的矩阵 3、算法...

2020-03-12 17:46:28 292 1

原创 论文|看腾讯如何玩转实时推荐-TencentRec
原力计划

今天要分享的一篇论文是有关腾讯如何利用协同过滤(Collaborative Filtering)、基于内容和图进行实时推荐的,我们都知道协同过滤是传统的推荐算法,但在实际应用中取得的效果却很好,因此在各大公司应用的也非常广泛。 协同过滤的改进经常出现了各种硕士研究生的毕业论文中,那都属于学术界的研...

2020-03-10 10:29:57 273 3

原创 算法工程师的数学基础|微积分之导数相关介绍

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1、算法工程师的数学基础|线性代数中的向量和向量空间 2、算法工程师的数学基础|线性代数中的矩阵 3、算法...

2020-03-10 10:25:19 179 0

原创 算法工程师的数学基础|线性代数中的矩阵

【算法工程师的数学基础】系列将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1、算法工程师的数学基础|线性代数中的向量和向量空间 2、算法工程师的数学基础|线性代数中的矩阵 线性代...

2020-03-05 23:07:10 767 2

原创 值得收藏 |近100页的《常见的五种神经网络》汇总电子书

首先在这里给各位读者分享一个好消息,我的处女作《推荐系统开发实战》已经被两所高校纳为教学用书了,当编辑把这个消息告诉我的时候,说实话内心十分的激动和意外! 目前这本书在京东和当当都有满100-50的活动,感兴趣的朋友欢迎购买阅读,目前该书还没有电子版,所以只能阅读纸质书了! 当当购买链接:htt...

2020-03-02 15:42:18 262 0

原创 算法工程师的数学基础|线性代数中的向量和向量空间

新的系列文章开启了,本系列文章主要是定位于【算法工程师的数学基础】,将会从线性代数、微积分、数值优化、概率论、信息论五个方面进行介绍,感兴趣的欢迎关注【搜索与推荐Wiki】公众号,获得最新文章。 《算法工程师的数学基础》已更新: 1、算法工程师的数学基础|线性代数中的向量和向量空间 线性代数主...

2020-02-28 02:48:00 382 0

原创 值得收藏 |140+页文章推荐系统系列文章汇总

这里简单说下为什么要写系列的文章,虽然系列的文章很不吃香,阅读率也是惨淡的一笔,可能很多人更爱看的是「标题党」、「八卦文」、「科普文」这样的。但我觉得系列文和技术文是真的很考验作者的,首先要面临惨淡的阅读和稀里哗啦的数据统计,其次要面临的是自己内心的崩溃。但好处是坚持下来,自己写完一个系列,自己的...

2020-01-18 22:54:57 3157 2

原创 浅谈企业如何正确的引入和发展AI算法

本文主要分为上下两部分,(上)部分主要介绍一下企业内部什么时候需要引入AI技术(这里的AI技术泛指机器学习、深度学习、NLP、视觉、语音、推荐等),(下)部分主要介绍一下在引入这些AI技术之后的一些情况和企业的技术方向发展。 (上)部分 数据积累 当一个产品是以内容为主的时候,必然会积累大量的数...

2020-01-04 16:22:08 3715 0

原创 2019年终总结-埋下的种子是讲给自己的故事

窗外有漆黑的夜,心中是明亮的灯。其实每个人的内心都有一颗属于自己的灯塔,不渡远方的邮轮,不引迷路的灵魂。 不知不觉的,时间又过了一年,年初兴高采烈给自己2019立flag的情景还在眼前晃着,一不小心这一年就要彻底沦为过往了。回想过去这一年,许多人匆匆到来,也有很多人悄悄离去,有过好友相聚的狂欢,也...

2020-01-01 23:17:30 3535 3

原创 常见的五种神经网络(5)-生成对抗网络(下)之GAN、DCGAN、W-GAN

在上一篇文章中介绍了生成模型的基本结构、功能和变分自动编码器,在本篇文章中主要介绍一下生成对抗网络(Generative Adversaarial Networks,GAN) KL散度、JS散度、Wassertein距离 KL散度 KL散度又称相对熵,信息散度,信息增益。KL散度是两个概率分布P...

2019-12-31 15:54:24 4139 1

原创 常见的五种神经网络(5)-生成对抗网络(上)之变分自动编码器

概率生成模型简称生成模型(Generative Model),是概率统计和机器学习中的一类重要模型,指一系列用于随机生成可观测数据的模型。生成模型的思路是根据可观测的样本学习一个参数化的模型pθ(x)p_{\theta}(x)pθ​(x)来近似未知分布pr(x)p_r(x)pr​(x),使得生成的...

2019-12-29 22:33:48 3764 0

原创 论文|LinUCB论文的思想解读、场景应用与痛点说明

文章目录概述Disjoint LinUCBHybrid LinUCB评估算法实验说明实验位置数据选择特征选择特征降维实验结论注意点LinUCB 的重点场景应用 本篇文章主要介绍一下雅虎在2012年发表的论文 【A Contextual-Bandit Approach to Personalize...

2019-12-23 20:48:47 9766 0

原创 常见的五种神经网络(4)-深度信念网络(下)篇之深度信念网络的原理解读、参数学习

该系列的其他文章: 常见的五种神经网络(1)-前馈神经网络 常见的五种神经网络(2)-卷积神经网络 常见的五种神经网络(3)-循环神经网络(上篇) 常见的五种神经网络(3)-循环神经网络(中篇) 常见的五种神经网络(3)-循环神经网络(下篇) 常见的五种神经网络(4)-深度信念网络(上篇) 常见...

2019-12-07 18:02:07 3887 0

原创 Django3.0和Python3.7连接Mysql报:Error loading MySQLdb module. Did you install mysqlclient?

环境说明 Python 3.7.3 Django 3.0 安装:pip3 install -U Django 文档:https://docs.djangoproject.com/zh-hans/3.0/contents/ 项目说明 创建项目 django-admin startproje...

2019-12-04 15:45:02 2169 0

原创 Spark使用Libsvm格式数据构造LabeledPoint格错误:requirement failed:Index 2287 out of bounds for vector of size 27

背景 使用libsvm格式的数据构造LabeledPoint格式,例如我的libsvm格式数据如下(索引下标最大值为,3000): 790718 1:1 2:1 4:1 5:1 6:1 7:1 9:1 11:1 13:1 16:1 19:1 21:1 28:1 31:1 43:1 64:1 65:...

2019-11-29 10:29:22 845 0

原创 NLP实战之基于TFIDF的文本相似度计算

TFIDF算法介绍 TF-IDF(Term Frequency–InverseDocument Frequency)是一种用于资讯检索与文本挖掘的常用加权技术。TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力...

2019-11-27 20:14:01 1119 0

原创 常见的五种神经网络(4)-深度信念网络(上)篇之玻尔兹曼机和受限玻尔兹曼机

引言 常见的五种神经网络系列第三篇,主要介绍深度信念网络。内容分为上下两篇进行介绍,本文主要是深度信念网络(上)篇,主要介绍以下内容: 背景 玻尔兹曼机 受限玻尔兹曼机 该系列的其他文章: 常见的五种神经网络(1)-前馈神经网络 常见的五种神经网络(2)-卷积神经网络 常见的五种神经网络(3...

2019-11-26 14:32:04 3704 3

原创 美团点评技术与算法文章汇总,设计算法、前后端、客户端、小程序等

这是一份福利贴,先看内容,再看获取方式。 算法文章汇总目录: 美团“猜你喜欢”深度学习排序模型实践 美团大脑:知识图片的建模方法及其应用 深度学习在美团搜索广告排序的应用实践 美团深度学习系统的工程实践 美团餐饮娱乐知识图谱——美团大脑揭秘 美团在O2O场景下的广告营销 美团外卖骑手背后的AI技...

2019-11-18 20:28:25 1330 0

原创 机器学习中非常有名的理论或定理你知道几个?

转载请注明出处:http://blog.csdn.net/gamer_gyt 博主微博:http://weibo.com/234654758 Github:https://github.com/thinkgamer 公众号:搜索与推荐Wiki 个人网站:http://thinkgamer.gith...

2019-11-16 22:30:20 3497 6

原创 TensorFlow的逻辑回归实现

打开微信扫一扫,关注微信公众号【数据与算法联盟】 转载请注明出处:http://blog.csdn.net/gamer_gyt 博主微博:http://weibo.com/234654758 Github:https://github.com/thinkgamer 逻辑...

2019-11-13 23:22:39 846 0

原创 模型的独立学习方式

本篇文章主要介绍一些“模型独立的学习方式”,比如:集成学习、协同学习、自学习、多任务学习、迁移学习、终身学习、小样本学习、元学习等。

2019-11-12 20:53:23 977 0

原创 【论文】文本相似度计算方法综述

概述 在信息爆炸时代,人们迫切希望从海量信息中获取与自身需要和兴趣吻合度高的内容,为了满足此需求,出现了多种技术,如:搜索引擎、推荐系统、问答系统、文档分类与聚类、文献查重等,而这些应用场景的关键技术之一就是文本相似度计算技术。因此了解文本相似度的计算方法是很有必要的。 文本相似度定义 文本相似度...

2019-11-07 15:55:25 2437 1

原创 无监督学习中的无监督特征学习、聚类和密度估计

无监督学习(Unsupervised Learning)是指从无标签的数据中学习出一些有用的模式,无监督学习一般直接从原始数据进行学习,不借助人工标签和反馈等信息。典型的无监督学习问题可以分为以下几类:无监督特征学习、密度估计、聚类。

2019-11-05 10:58:36 1532 0

原创 冷启动中的多臂老虎机问题(Multi-Armed Bandit,MAB)

Thompson sampling Thompson Sampling是基于Beta分布进行的,所以首先看下什么是Beta分布? Beta分布可以看作是一个概率的概率分布,当你不知道一个东西的具体概率是多少时,他可以给出所有概率出现的可能性。Beta是一个非固定的公式,其表示的是一组分布(这一点和...

2019-10-15 10:50:47 1030 0

原创 神经网络中的网络优化和正则化(四)之正则化

谢谢

2019-09-27 08:15:10 1046 4

提示
确定要删除当前文章?
取消 删除